

Calcium Silicate Slag Application Influences Nutrient Availability in Soil and Uptake By Wheat

Brandon White¹, Tapasya Babu¹, Lawrence Datnoff², Henry J Mascagni Jr.³ and Brenda Tubana¹ ¹School of Plant, Environmental, and Soil Sciences, Louisiana State University, Baton Rouge, LA ²Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA ³LSU AgCenter Northeast Research Station, St. Joseph, LA

INTRODUCTION

- Silicon (Si) has proved to be a beneficial nutrient to many crops including wheat, providing abiotic and biotic stress resistance. The form that is available to plants is mono-silicic acid $(H_{4}SiO_{4})$.
- Calcium silicate slag is a by-product from the steel industry and is commonly used as a source of Si fertilizer.
- The US is the largest exporter of wheat in the world and ranks the third highest in planted acreage and gross farm receipts among US field crops.
- Influence of varying rates of Si and N on yield improvement and nutrient uptake in wheat is not fully understood.

OBJECTIVE

To investigate the influence of varying rates of Si and N on yield and essential nutrient uptake in wheat.

MATERIALS AND METHODS

- **Experimental Sites**:
- 1.St. Joseph, LA (NERS 2013) on a Commerce silt loam soil (Finesilty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts).
- 2. St. Joseph, LA (NERS 2014) on a Sharkey-Tunica-Newellton complex (Very-fine, smectitic, thermic Chromic Epiaquerts) and Commerce silt loam soil types.
- 3. Benhur, LA (BH 2014) on a Cancienne silt loam soil (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic epiaquepts).
- **Treatment Structure**: N rates: 101 and 145 kg ha⁻¹; CaSiO₃ (17% Si) rates: 1, 2, 4.5, and 9 Mt ha⁻¹. Check plots: lime (90% CaCO₃) Equivalent) at 4.5 Mt ha⁻¹; no lime.
- **Experimental Design:** Randomized Complete Block Design, Four replications.
- **Establishment**: Seeds of wheat variety Terral TV8525 were drilled at a rate of 100 kg seeds ha⁻¹. Nitrogen treatment was applied as top-dressed urea (46%N) (Fig 1B).
- **Sample and Field Data Collection**: Biomass clippings at Feekes 5 and 10.5 growth stages; whole plant sub-samples at harvest (Fig. 1D); plot yield using a combine harvester (Fig. 1E); mid-season and post-harvest (Fig. 1F) soil samples.
- Analyses: <u>Soil samples</u> 0.5 M acetic acid extractable Si following Molybdenum Blue Colorimetry (MBC) and Mehlich-3 extractable nutrients by Inductively Coupled Plasma Mass Spectrometry (ICP) **<u>Plant tissue samples</u>** - elemental composition using HNO₃-H₂O₂ wet digestion followed by ICP, total N content by dry combustion and Si content by Oven- Induced Digestion procedure followed by MBC.
- **Statistical Analysis**: Analysis of variance using PROC Mixed in SAS. Mean separation procedure and contrast analysis followed when treatment effect was significant.

Figures 1A-F. Application of CaSiO₃ slag and lime prior to planting (A); Top dressing of urea (B); Disease monitoring and rating (C); Whole plant sampling for yield component determination (D); Plot harvesting with combine harvester (E); and post-harvest soil sampling (F).

Table 1. Analysis of Variance on effect of Si (CaSiO₃) and N (Urea) on soil pH and concentration (mg kg⁻¹) of nutrients at harvest

	¹pH	² Si	³ NO ₃	³ Ca	³ Mg	³ S	³ Fe	³ Mn	³ Zn
Effects				l	NERS 20	13			
Ν	NS	NS	*	NS	NS	NS	NS	NS	NS
Si	* * *	* * *	* * *	* * *	* * *	**	NS	NS	*
N * Si	NS	NS	NS	NS	NS	NS	NS	NS	NS
				1	NERS 20	14			
Ν	NS	NS	NS	NS	NS	NS	NS	NS	NS
Si	**	* * *	*	**	NS	NS	NS	NS	* *
N * Si	NS	NS	NS	NS	NS	NS	NS	NS	NS
					BH 201	4			
Ν	NS	NS	NS	NS	NS	NS	NS	NS	NS
Si	**	* * *	* *	* * *	* * *	* * *	NS	* *	* * *
N * Si	NS	NS	NS	NS	NS	NS	NS	NS	NS

¹Soil pH, ²0.5 M acetic acid extractable Si, and ³Selected Mehlich-3 extractable nutrients soil samples at different N and CaSiO3 slag rates in all three site years were used. Other nutrients did not show significant changes.

ACKNOWLEDGEMENTS

Edward Levy Company and the Louisiana Soybean and **Research and Promotion Board for funding suppor**

uplake (mg kg -) of nuthents by wheat straw at harvest										
	¹ Si	² N	³ Р	³ Ca	³ Mn	³ S	³ Fe	³ Mo	³ Zn	
Effects	NERS 2013									
Ν	**	NS	NS	NS	NS	NS	NS	NS	NS	
Si	NS	NS	NS	NS	****	**	NS	NS	NS	
N * Si	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	NERS 2014									
Ν	NS	NS	NS	**	NS	**	NS	NS	NS	
Si	NS	NS	NS	NS	* *	NS	NS	*	NS	
N * Si	NS	* * *	* * *	* *	NS	**	*	NS	NS	
	BH 2014									
Ν	NS	* * *	NS	* *	NS	NS	NS	NS	NS	
Si	NS	NS	NS	NS	* * *	NS	*	* *	NS	
N * Si	NS	NS	NS	NS	NS	NS	NS	NS	NS	
P < 0.001 = **** P < 1 = 0.01 = *** P < 1 = 0.05 = ** P < 1 = *										

P < 0.001=****, *P*</=0.01=***, *P*</=0.05=**, P</= 0.1=* NS= Non Significant ¹ Si measured by oven induced digestion, ²N=Total N using dry combustion method. ³Selected nutrients analyzed using nitric acid digestion of post-harvest straw samples at different N and CaSiO₃ slag rates in all three site years were used. Other nutrients did not show significant changes.

RESULTS

The results showed that application of CaSiO₃ slag increased the content of extractable Ca, Mg, S, Zn, NO₃⁻ and Si in soil (P<0.05). The application of CaSiO₃ slag also increased soil pH across site-years (*P*<0.01).

Straw Si and Mn content and uptake had a consistent negative relationship for all three site-years (P<0.05). Increasing CaSiO₃ slag rates significantly increased Fe, Mo, P and S uptake in straw (P<0.05).

This study brought into light some of the possible interactions between Si and other nutrients. Higher uptake of Mo concurrent with high rates of Si could be a reason for grain yield increases observed for BH 2014 at the highest Si rate of 9 Mt ha⁻¹ for both N rates (*P*<0.1).

CONCLUSIONS

The increased availability of nutrients in the soil and their uptake could play a role in improved yields thus, CaSiO₃ slag as a liming material in place of common agricultural lime may be a good alternative for sustaining wheat productivity.

REFERENCES

	White, B.	2015 "	EVALUA	TING	THE			
Grain	NITROGEN	FERTILIZ	ZATION	ON	WHE			
rt	submitted	to the	Gradu	ate	Facult			
	University and Agricultural and Mecha							

Table 2. Analysis of Variance on effect of Si (CaSiO₃) and N (urea) on uptake (mg kg⁻¹) of nutrients by wheat straw at harvest

EFFECTS OF SILICON AND AT PRODUCTION". Thesis. ty of the Louisiana State anical College. Web