

Microplot Study with the Portable Flow through System and Soil Core Incubation for N₂O Emissions Measurements Kostyanovsky, K.I. (<u>kkostya@vt.edu</u>), Huggins, D.R., Stockle, C. O., Waldo, S. Brown, D., Pan, W.

INTRODUCTION

Soil moisture and N fertilization are major factors affecting emissions of highly potent greenhouse gas nitrous oxide, which is the major contributor to climate change from agricultural land. A well-known substrate acetylene is commonly used in soil incubation studies for preventing nitrification and therefore eliminating respective pool of nitrous oxide by deactivating ammonia monoohygenase enzyme, which catalyzes ammonia oxidation process.

The inhibition reaction happens at 0.1-10Pa (0.01%) concentrations of acetylene. The current study was designed to evaluate the effects N fertilization and repeat water additions on N₂O and CO₂ emissions and to assess the nitrification and denitrification pools of N₂O-N in no-till winter wheat system in Pacific Northwest.

MATERIALS AND METHODS

We implemented two Li-Cors 8100A and the total of 30 Li-Cor chambers coupled with one LGR 23r N₂O analyzer via a series of solenoid valves and a CR1000 datalogger (Kostyanovsky K.I., et al, submitted) in continuous flow through chamber system for monitoring of CO₂ and N₂O emissions in the short term microplot study between October 1 and October 12, 2014. The following treatments were repeated seven times, preceded by abundant water additions:

- 150 kg KNO₃-N ha⁻¹+35g glucose
- 150 kg aqua-N ha⁻¹+35g glucose
- No fertilizer+35g glucose
- 150kg KNO₃-N ha⁻¹
- [•] 150kg aqua-N ha⁻¹
- No fertilizer

Fertilized treatments resulted in the effective application rate of 1050 kg N ha⁻¹ in order to avoid limiting N due to repeat water additions for maximum treatment effects of N₂O emissions. Glucose additions each time were added to increase soil microbial activity.

RESULTS AND DISCUSSION

Soil moisture and temperature measured at 15cm for the duration of the study

Soil incubation study previously conducted on 24 cores from 0-20cm at 10Pa and 0Pa of C₂H₂ in order to obtain values for nitrification and denitrification pools of N₂O (Kostyanovsky K.I. et al., 2014) showed highest emissions occur at 90%WFPS. Due to inability of achieving 90%WFPS moisture level on the permanent basis in unsaturated soils (see soil moisture plot), results of the incubation study at semi saturated conditions produce higher fluxes of N₂O than in situ measurements.

Automatic static chamber study conducted in 5 replications per treatment and set up to conduct 4 N₂O measurements and 8 CO₂ measurements per chamber per 24h period demonstrated higher fluxes of N₂O produced by aqua fertilizer than KNO₃ or no fertilizer treatments. Application of glucose also increased N₂O emissions.

Emissions of N₂O were highest from aqua+glucose treatment, likely due to nitrification of NH₄⁺ from N source and denitrification both contributing to N_2O production.

Treatment effects on CO₂ emissions were less pronounced. Linear increase in cumulative CO₂ indicates that moisture and soluble carbon likely affect mineralization less than nitrification and denitrification processes.

Washington State University, USDA-ARS

The fraction of N₂O originating from denitrification is 0.48 at 90%WFPS, 0.93 at 60%WFPS, and 0.11 at 30% WFPS. As majority of the time soil is within 60%WFPS range in the in situ study, most of the N₂O produced from denitrification.

Denitrification was the major predicted part of N₂O flux based on soil core incubation results applied to in situ chamber data.

Net CO₂ emissions over 1.5 month period were comparable to annual emissions likely due to multiple drying and wetting.

CONCLUSIONS

- saturated soils;
- approximately 60%WFPS following drainage; Exponential increase in N₂O emissions occurs following fertilizer N and water additions; Nitrate+glucose and aqua+glucose treatments produced highest N₂O flux likely due to increased microbial activity in non-limiting N environment; • N₂O emissions from aqua+glucose treatment were exponential in the initial days of the study likely due
 - in high N₂O flux; groundwater.

References:

Kostyanovsky, K.I., Huggins, D.R., Stockle, C.O., Karimi, T., Waldo, S.R. Effects of N Fertilization and Irrigation on Nitrification and Denitrification Pools of N₂O: Acetylene Inhibition Microplot Study. Proceedings of the 2014 ASA-CSA-SSSA International Annual Meetings. Long Beach, CA. November 2-6. Kostyanovsky, K.I., Huggins, D.R., Stockle, C. O., Waldo, S., Lamb, B., Smith, J.L. Flow through Chamber System for Automated Measurements of Soil N₂O and CO2 Emissions. Journal of Environmental Quality (Submitted).

Acknowledgement: This study is part of the project, "Regional Approaches to Climate Change for Pacific Northwest Agriculture", funded through award #2011-68002-30191 from the National Institute for Food and Agriculture.

Denitrification is the major source of N₂O in semi

Repeat water additions establish moisture levels at

-to nitrification and denitrification combined resulting

Despite application of N exceeding agronomic rates by 7 times over a short period, the net N₂O loss was 0.1% of N applied, possibly due to leaching of N to