

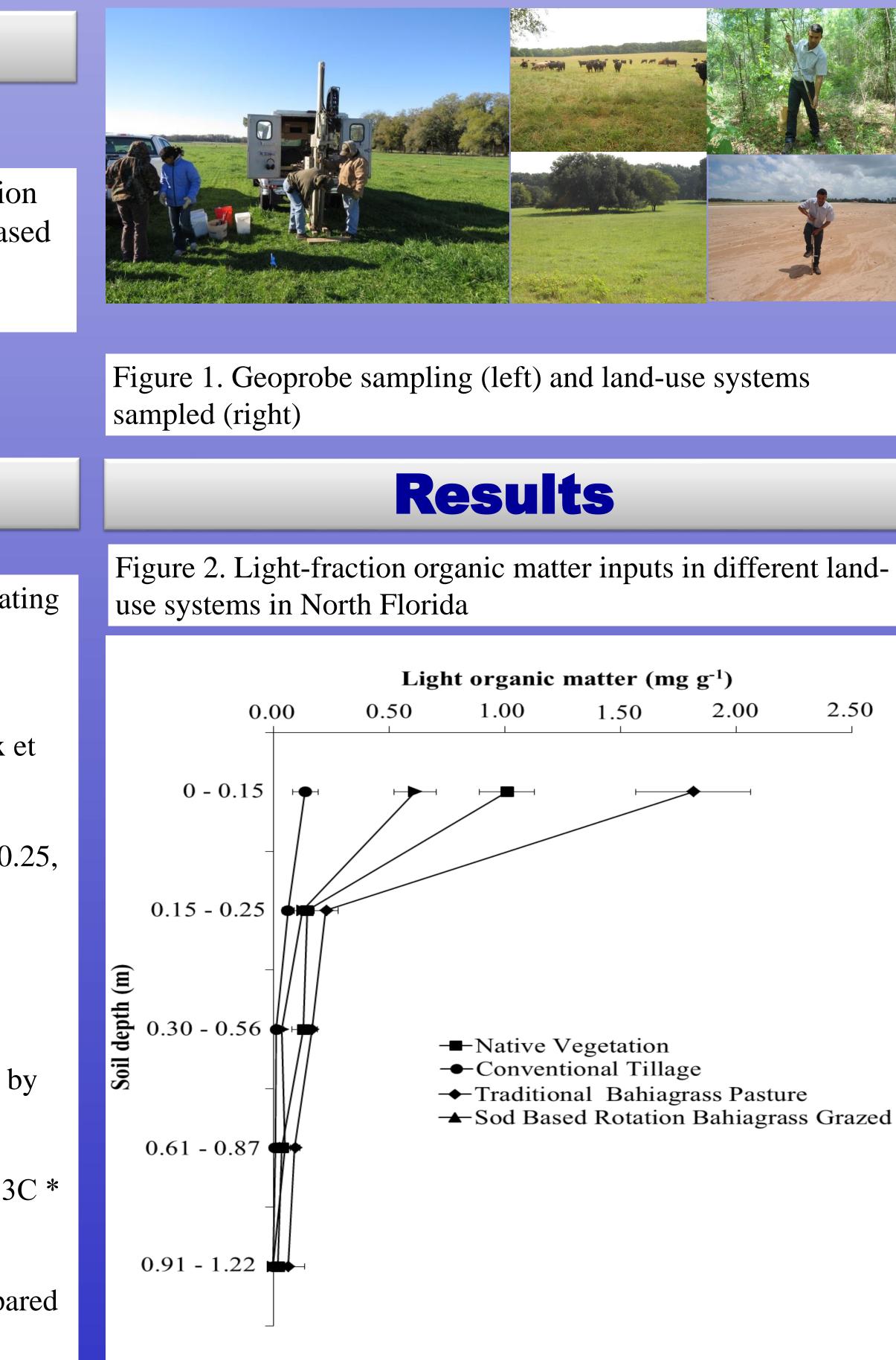
J.C.B. Dubeux, Jr.¹; T.C. Souza¹, H.M.S. Silva¹, C. Mackowiak¹, D. Wright¹, S. George¹, J.J. Marois¹, E.R.S. Santos¹, M. Ruiz-Moreno¹

¹University of Florida, North Florida Research and Education Center (NFREC)

- \checkmark Land use is a key factor affecting C input in agricultural systems. ✓ Assessing recent C inputs provide useful information guiding long-term soil C balance.
- ✓ Light SOM fraction represents recent C inputs and it is linked with important soil processes such as mineralization of SOM.
- \checkmark CO₂ evolution is an indicator of soil microorganism respiration, which is an additional response that characterize labile soil C.

Objectives

 \checkmark This research assessed light fraction SOM and soil CO₂ emission in different land use systems in North Florida including sod-based rotation (SBR), bahiagrass pasture, native vegetation, and conventional tillage.


Methods

- ✓ Land-use systems assessed included: 1) sod-based rotation integrating crops (cotton and peanut) and livestock (bahiagrass pastures); 2) bahiagrass pasture; 3) native vegetation; 4) conventional tillage.
- ✓ Light fraction of SOM determined by density separation (Dubeux et al., 2006)
- \checkmark Light fraction was determined in five depths (0 to 0.15, >0.15 to 0.25, 0.30-0.56, 0.61-0.87, and 0.91-1.22 m).
- \checkmark CO₂ evolution measured using the soil based respiration method (Harris et al., 1997).
- $\checkmark \delta^{13}$ C of evolved CO₂ was determined using the method described by Ramnarine et al. (2012).
- ✓ The atom% ¹³C was calculated by the equation atom% $^{13}C = [(\delta 13C * 13))$ 1,1056)/1000] + 1,1056 (Unkovich et al., 2008 and Fry, 2008).
- ✓ Data analyzed using proc mixed from SAS and LSMEANS compared using PDIFF adjusted by Tukey (P < 0.05)

Recent C inputs in different land-use systems in North Florida

Introduction

Y Physical fractionation of soil organic matter (SOM) by particle density, into light and heavy fractions, has been an important alternative to SOM chemical fractionation.

	Results				
	Table 1. Soil CO ₂ emission, δ^{13} C of emitted CO ₂ , total C emitted , and Atom% ¹³ C in the emitted CO ₂				
	Land-use systems	Soil CO ₂ evolution (mg of C-CO ₂ kg ⁻¹ soil.hour ⁻¹)	$\frac{\delta^{13}C in CO_2}{(\%)}$	Total C (mg)	Atom%13C (%)
	Conventional Tillage	0.219 a	-15.73 a	11.57 a	1.0882 b
	Traditional Bahiagrass pasture	0.542 a	-13.36 b	12.92 a	1.0908 a
	Native Vegetation	0.501 a	-16.16 a	11.26 a	1.0877 b
	SBR – Bahiagrass 1 st yr	0.526 a	-14.88 ab	12.17 a	1.0891ab
1	SBR – Bahiagrass 2 nd yr	0.319 a	-15.10 a	12.25 a	1.0889 b
	SBR – Cotton	0.402 a	-15.61 a	13.88 a	1.0883 b
	SBR – Peanut	0.387 a	-16.53 a	15.25 a	1.0873 b
	SE	0.118	0.51	0.98	0.0006
	Ρ	0.4384	0.0085	0.1410	0.0082
	Conclusions				
 ✓ Light fraction SOM was greater at the shallowest layer (0 to 0.15 cm), reducing its a and variability in deeper soil layers. Bahiagrass pastures showed the greatest C inputs. ✓ Soil microbial respiration did not differ among land use systems. ✓ The δ¹³C value obtained from the evolved CO₂ was less depleted in the bahiagrass parameters and sod-based rotation system compared to conventional tillage and native veget demonstrating the importance of the C₄ bahiagrass increasing the pool of soil labile C. 					inputs. agrass pastures ive vegetation,
	Dubeux, J.C.B., Jr., L.E. Sollenberger, N.B. Comerford, J.M. Scholberg, A.C. Ruggieri, J.M.B. Vendramini, S.M. Interrante, K.M. Portier. 2006. Management intensity affects density fractions of soil organic matter from grazed bahiagrass swards. Soil Biology & Biochem., 38:2705-2711.				

Fry, B. Stable Isotope Ecology. Baton Rouge, LA. 2008. 307p. Harris, D.; Porter, L. K.; Paul, E. A. Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate. Commun. Soil Sci. Plant Anal., v.28, p.747-757. 1997. Ramnarine, R.; Wagner-riddle, C.; Dunfield, K. E.; Voroney, R. P. Contributions of carbonates to soil CO₂ emissions. Can. J. Soil Sci., v.92, p.599-607. 2012.

