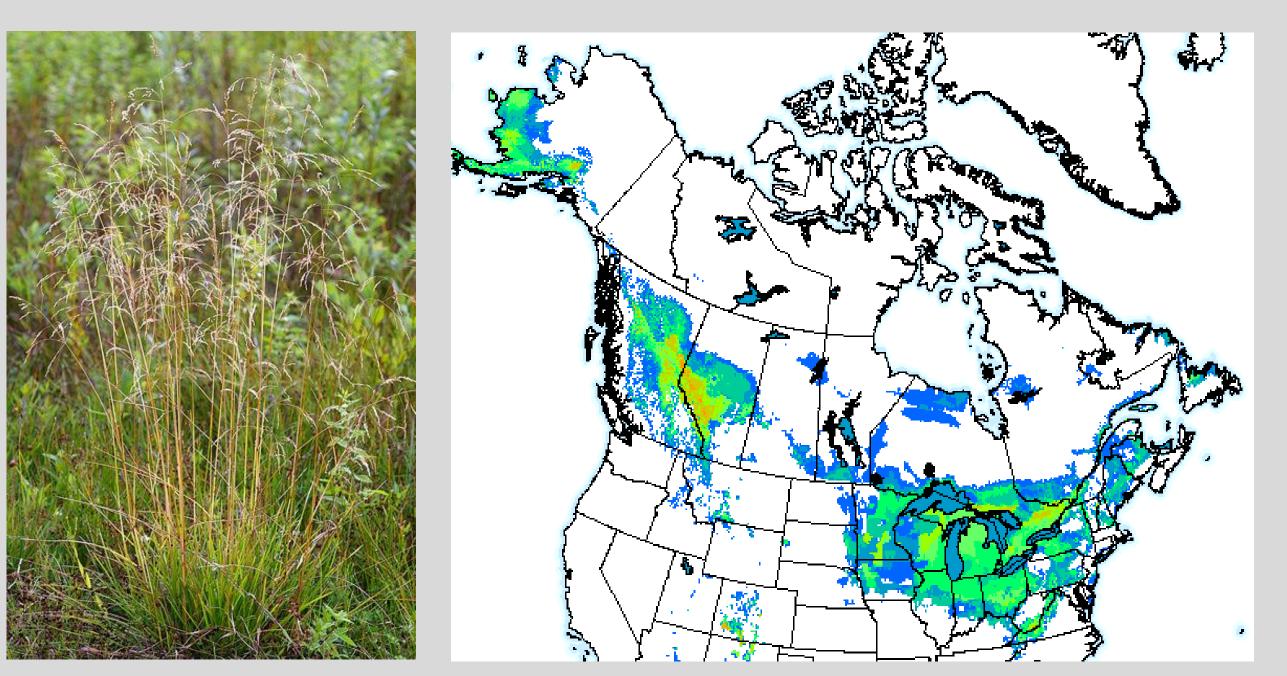

Evaluation of nickel toxicity in *Deschampsia cespitosa*: analysis of morphological changes and DNA methylation

S. Rainville¹, K.K. Nkongolo^{1,2}, P. Michael, M. Mehes-Smith¹ and P. Beckett¹ ¹Department of Biology and ²Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada

Introduction

The Greater Sudbury Region has, for the last 130 years, been a location known for its mineral deposits. The extraction procedure used on these deposits has left the area's soils metal-contaminated and difficult for plants to colonize. One plant which thrived in the region is D. cespitosa, a species known to be an excluder, restricting metal accumulation to their roots with limited translocation to aerial tissue. The potential for phytoextraction is therefore high in *D. cespitosa*. The exclusion mechanism is unknown and there is limited information on the regulation of genes associated with metal transport and tolerance.


Results and Discussion

Results and Discussion

Table 1a: Candidate genes for nickel tolerance in *D. cespitosa*.

Gene	Species	Reference
Serine acetyltransferase (SAT)	Thlaspi goesingense	Freeman et al., 2004
Glutathione reductase (GR)	Thlaspi goesingense	Freeman et al., 2004
Nicotianamine synthase (NAS3)	Noccaea caerulescens Thlaspi caerulescens	Visioli <i>et al</i> ., 2014 Mari <i>et al</i> ., 2006
Metal transporter Nramp3	Noccaea caerulescens	Visioli <i>et al.</i> , 2014
Metal transporter Nramp4	Noccaea caerulescens	Visioli <i>et al</i> ., 2014
1-aminocyclopropane-1-carboxylic acid deaminase (ACC)	Brassica napus	Stearns et al., 2005
High affinity nickel transporter family protein (AT2G16800)	Arabidopsis thaliana	

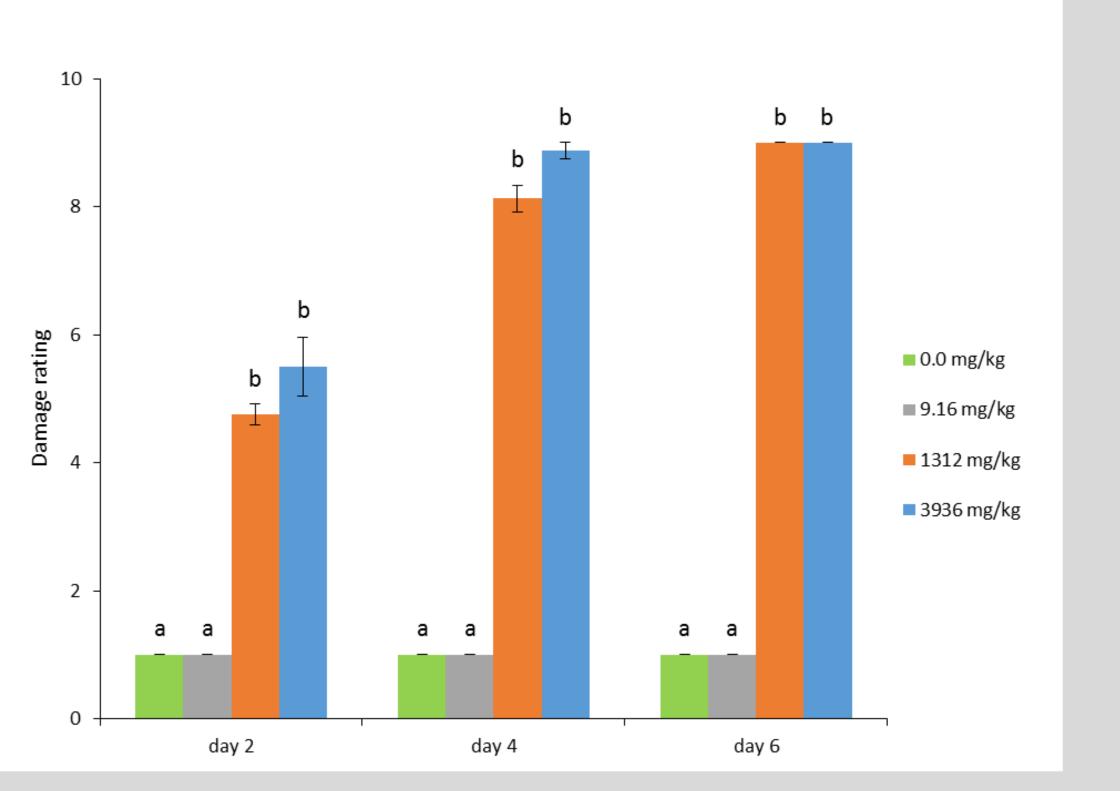


Figure **1a**: Tufted hairgrass (*D. cespitosa*) **1b**: Geographical distribution of Tufted hairgrass

Objectives

- \succ To assess the toxicity of nickel and copper in *D. cespitosa*. > To determine metal regulation levels in *D. cespitosa* contaminated with
- different nickel concentrations.
- >To determine metal regulation levels in *D. cespitosa* contaminated with

Figure 2a: Damage rating (based on a scale of 1 to 10) for *D. cespitosa*, treated with three different doses of nickel (5.6 mg/kg, 1,600 mg/kg and 4,800 mg/kg). Water was used as a control (0 mg/kg).

Table 1b: Candidate genes for copper tolerance in *D. cespitosa*.

Gene	Species	Reference
Copper-transporting ATPase (RAN1)	Arabidopsis thaliana	Kobayashi <i>et al.</i> , 2008
Multi-drug resistance-associated protein (MRP4)	Betula pendula	Keinänen et al., 2007
Copper transporter protein (COPT1)	Arabidopsis thaliana	Sancenón et al., 2004
Metallothionein (MT2b)	Arabidopsis thaliana	Guo et al., 2008

Nickel assays

- \geq No damage to plants was observed during the seven days of treatment with 5.6 mg/kg dose.
- Significant differences for damage rating, root and leaf biomass were observed between the 1,600 mg/kg dose (representing the total Ni level found in contaminated Greater Sudbury soil) and the control (0.0mg/kg).
- \succ The 4,800 mg/kg treatment was extremely toxic as all the plants were dying (damage rating of 8 on a scale of 1 to 10) within 48 hours after the treatment.

different copper concentrations.

Materials and Methods

Field experiment

 \succ three metal-contaminated sites and three reference sites were selected. >Leaf and root samples were collected from ten specimens per site, flash frozen with liquid nitrogen, and stored at -20°C until RNA extraction.

Growth chamber assays

>Seeds were harvested from two metal-contaminated sites, and were germinated in a Petawawa box.

>Seedlings were grown in a growth chamber until an average height of 20 cm.

Nickel treatment included three doses of nickel nitrate: 5.6 mg/kg, 1,600 mg/kg and 4,800 mg/kg.

 \succ Copper treatment included three doses of copper sulfate: 9.16 mg/kg, 1,312mg/kg, 3,936 mg/kg.

 \rightarrow Water was used as a control (0 mg/kg).

>The experiment was a completely randomized block with seven to ten replications.

>Damage rating (based on a scale of 1 to 10) and root and leaf biomass were recorded to determine the effect of nickel on plant aspect and growth.

>Analyses of variance were performed using SPSS version 20 to determine significant differences between treatments. Gene Regulation

Figure 2b: Damage rating (based on a scale of 1 to 10) for *D. cespitosa*, treated with three different doses of copper (9.16 mg/kg, 1,312 mg/kg and 3,936 mg/kg). Water was used as a control (0 mg/kg).

Table 2a: mean height difference and biomasses for nickel controlled experiment.

	Growth rate (cm)	Day 7 Bio	Biomass (g)	
Treatment	7 days	leaf	root	
0.0 mg/kg	8.34ab	3.70a	3.34a	
	±1.12	±0.31	±0.38	
5.6 mg/kg	11.42a	2.76a	2.71ab	
	±0.67	±0.31	±0.31	
1600 mg/kg	4.50bc	0.67b	1.37bc	
	±0.58	±0.13	±0.44	
4800 mg/kg	4.00c	1.00b	0.84c	
	±0.46	±0.17	±0.17	

Table 2b: mean height difference and biomasses for copper controlled experiment

	Growth rate (cm)	Day 7 Biomass (g)	
Treatment	7 days	leaf	root
0.0 mg/kg	4.38a	6.18a	5.04a
	±1.78	±0.58	±0.43
9.16 mg/kg	3.88a	5.72a	5.54a
	±1.16	±0.45	±0.53

Copper controlled experiment

 \geq No damage to plants was observed during the seven days of treatment with the 9.16 mg/kg dose.

> Significant differences for damage rating, root and leaf biomass were observed between the 1,312 mg/kg dose (representing the total Cu level found in contaminated Greater Sudbury soil) and the control (0.0 mg/kg).

 \succ The 3,936 mg/kg treatment was extremely toxic as all the plants were dying (damage rating of 8 on a scale of 1 to 10) within 48 hours after the treatment.

 \succ Overall, Cu was more toxic than Ni in the assays.

Future directions

The regulation of tolerance genes associated with Ni and Cu tolerance is being assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Future studies will include transcriptome analysis and the identification of novel genes.

Acknowledgements

We are grateful to NSERC, Vale, and Glencore for their financial support

References

>Dulya OV, Mikryukov VS, and Vorobeichik EL. 2013. Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: analysis based on dose-response relationship. Russ

> Expression of genes associated with Ni and Cu in other plant species will be assessed in *D. cespitosa* exposed to different metal concentrations using Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR).

1312 mg/kg	0.25b	1.79b	2.23b
	±1.41	±2.81	±2.88
3936 mg/kg	0.75b	2.81c	2.88b
	±1.19	±0.28	±0.22

J Ecol 44:271-281.

>He, X.J., T. Chen, and J.-K Zhu. 2011. Regulation and function of DNA methylation in plants and animals. Cell Research 21: 442-465.

