Nebraska Soybean radiation-use efficiency in high yield production environments Jincoln

Nicolas Cafaro La Menza^{*}, John L. Lindquist, Tim Arkebauer, James E. Specht, George Graef, Patricio Grassini Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE. *e-mail: ncafarolm@gmail.com

Background and objective

 \checkmark Soybean is a key component of global food security because of the use of its seeds for \checkmark Analysis of radiation-use efficiency (RUE) in soybean is very difficult due to its high synthesis of protein and lipids during the seed filling phase. protein and oil for food and feed, accounting for 56% of global oilseed production. The objective of this study is to determine the efficiency of capture and use of solar \checkmark Efficiency in the capture and use of seasonal solar radiation to produce biomass and \checkmark seed yield has not been studied in soybean crops that approach yield potential. radiation in producer soybean fields that approach the yield potential.

Materials and methods

✓ Replicated experiments were installed in four producer irrigated fields Heat of combustion of each plant organ was measured with a bomb calorimeter to calculate energy-corrected ADM. in Nebraska (USA) planted with soybean in 2015. These fields had Comparison among locations was made possible by defining three consistently achieved yields >5 Mg ha⁻¹ (75 bu ac⁻¹) in previous \checkmark developmental stages (DS = 0, 1, and 2, corresponding to VE, years, equivalent to >90% of their yield potential. \checkmark Sensors were installed to measure incident, absorbed, transmitted, beginning of pod setting [R3], and physiological maturity [R7]), based photosynthetically active radiation on thermal units accumulated between stages. (PAR). reflected and Measurements were taken every second during the entire crop Seasonal dynamics of LAI, ADM, and fraction of absorbed PAR season, from emergence (VE) to physiological maturity (R7). (fAPAR) were described using exponential cubic models ($R^2 \ge 0.96$) ADM and APAR derived from fitted curves were used to determine \checkmark Plant samples were collected weekly to determine phenology, \checkmark RUE between sampling times and for the whole season.

aboveground dry matter (ADM), and green leaf area index (LAI).

Results

 \checkmark Seed yield ranged from 5.1 to 5.9 Mg ha⁻¹ across fields, which were within ±15% of \checkmark Soybean crops absorbed 2/3 of cumulative incident PAR between emergence and their respective simulated yield potential based on site-specific weather. (*Figure 1*) physiological maturity. (*Figure 2*)

between emergence and physiological maturity.

Conclusions

- ✓ Measured RUE in high-yield soybean crops (5-6 Mg ha⁻¹) did not exceed RUE values reported in the literature.
- Instead, high-yield soybean exhibited a very high capture (ca. 66%) of incident solar radiation during the growing season.
- \checkmark Energy-corrected biomass helped to explain part, but not all, of the decline in RUE during the seed filling, suggesting that other factors may be involved, such as declining leaf N content and respiratory load

											-		• • •			<i>c</i>	
✓ Decline in RUE during		0	200	400	600	800	0	200	400	600	800	associated	with bioma	ss remobiliz	ation	trom	
the seed-filling was not		Cumulative APAR (MJ m ⁻²)											vegetative organs to seed.				
fully explained by seed	Figure	3: (A) Above	eground dry ma	atter (ADM) a	nd (B) energy	/-corrected Al	DM as a fun	ction of cumu	lative absorbe	d PAR (APAF	Rc). Each line	✓ Efficiency of	converting in	cident PAR to	phytoer	nergy	
oil and protein	represe Tables	ents a línear re indicate seas	egression fitted	l for each loca use efficiency	tion over the (RUF) deriv	range of APA	Rc in which k slope of fitte	biomass was i d linear reare	responsive to i ssions (R²≥0 9	ncreasing leve 06 P<0.001	vels of APARc. with different	in high-yield	soybean syst	ems was, on a	average), 1%	
synthesis (Figure 3R)	letters i	indicating sta	tistically signifi	cant differenc	es between l	locations. In (B), RUE wa	s estimated a	as: ADM energ	y content / A	$APARc \times 100.$	(seed-yield ba	asis) and 2%	(total-biomass	basis).		
Synthosion(I iguic CD)	Figures	s in insets sho	ow the seasona	al dynamic in l	RUE, with the	latter calculat	ted for the tin	ne intervals b	etween biomas	ss sampling tir	imes.	✓ These effic	iencies rep	resent bencl	nmarks	for	
✓ Seasonal trends in RUE,	calcu	lated for	r the time	intervals	s betwee	en sampli	ing date	s, indica	te change	es with c	ontogeny.	maximum pr	oductivity in	well-managec	J. hiah-	-input	
(insets in Figure 3)												sovbean syst	iems.	5	, 3		
✓ Measured energy in end-	of-sea	son ADM	/I and see	d yield re	epresente	ed, on av	erage, 2	2% and 1	% of the t	total incid	dent PAR						
during the crop season (a)	ssumi	na root b	piomass to) represe	nt 15% c	of ADM).							This project	was supported by the	Soyb	eans	
3 1 1 1 1 1 1 1 1 1 1		5				/-							Nebrasł	a Soybean Board	Nebraska Sor	ybean Board	
 synthesis.(<i>Figure 3B</i>) ✓ Seasonal trends in RUE, (<i>insets in Figure 3</i>) ✓ Measured energy in end-c during the crop season (a 	Ietters in Figures calcu of-seas ssumi	indicating sta in insets sho lated for son ADM ng root b	<i>tistically signific ow the seasona</i> I the time A and see Diomass to	<i>cant differend</i> <u>al dynamic in i</u> intervals d yield re o represe	es between le RUE, with the S betwee opresente nt 15% c	ocations. In (<u>latter calculat</u> on sampli ed, on av of ADM).	(B), RUE wa ted for the tin ing date erage, 2	s estimated a <u>ne intervals be</u> S, indica ⁻ 2% and 1	es: ADM energy etween biomas te change % of the f	es sampling tin es with c	APARc x 100. imes. Ontogeny.	 ✓ These effic maximum press Soybean syst 	asis) and 2% iencies rep oductivity in ems. This project Nebrasl	(total-biomass esent bench well-managec was supported by the a Soybean Board	basis). Imarks I, high-	for -input CONS CONS Cybean Bod s. Driven by Results	