

Effect of Delaying the Flood and Preflood Nitrogen Application on Rice Nitrogen Uptake and Yield

T.L. Richmond*, N.A. Slaton, J.T. Hardke, T.L. Roberts, R.J. Norman, D.D. Cox, and D.A. Sites

University of Arkansas - Agricultural Experiment Station and Cooperative Extension Service

Summary Statement: Preliminary results indicate near maximal rice grain yields (± 5% of maximum) can be produced when preflood-N and flooding are done from about 380 to 730 DD10 units.

INTRODUCTION

Urea-N is utilized best when applied to a dry soil surface which reduces NH₃ volatilization (Photo 1). Rice can recover up to 75% of applied urea-N using a delayedflood system when the urea is applied to dry soil and incorporated with the flood (Wilson et al., 1989). \Box The 4-to 5-leaf stage [190 – 310 degree days (DD10) units] is the 'optimal' time for preflood-N application (Photo 2). Untimely rainfall can create moist field conditions that are not ideal for applying preflood-N. Urea-N application onto moist soil is not recommended and farmers are encouraged to delay urea-N application until the soil is dry. Research by Norman et al. (1992) showed delaying preflood-N and flood application up to

Table 2.	Regression a	coefficien	ts for above	Fig. 1. Aboveground-N uptake as affected by			
uptake as affected by N rate and application time.					N rate and application time at the PTRS.		
	N rate		Linear	Quadratic	250		
Location	(kg N ha ⁻¹)	Intercept	coefficient	coefficient	● 0 kg N ha ⁻¹ ○ 90 kg N ha ⁻¹ ▼ 135 kg N ha ⁻¹ △ 180 kg N ha ⁻¹		
PTRS	0	-57	0.316	-0.000175	▲ · · · · · · · · · · · · · · · · · · ·		
	90	23	0.316	-0.000175			
	135	52	0.316	-0.000175			
	180	73	0.316	-0.000175	₽ 150 - • • • • • • • • • • • • • • • • • •		
RREC	0	26	0.222	-0.000257	o o		
	45	59	0.222	-0.000257	5 100 -		
	90	87	0.222	-0.000257			
	135	127	0.222	-0.000257	ž 50 -		
	kg N ha ⁻¹ = $\frac{1}{2}$	intercept +	Linear(x) + Q				
					0		

RESULTS

Aboveground-N Content at the PTRS

- □ N uptake increased nonlinearly as DD10 units increased, depended on N rate, and peaked at 896 DD10 units (Table 2 & Fig. 1).
- □ The increase in aboveground-N content was due to greater uptake of soil-N as flood time was delayed. The aboveground-N content of rice receiving no fertilizer-N nearly doubled across the flood times. **Aboveground-N content at the RREC**
- □ N uptake across flood times was nonlinear (Table 2 & Fig. 2) and peaked at 377 DD10 units. Although total-N uptake changed across time the variation ranged from 157 to 175 kg N ha⁻¹ within the range of fertilization dates (Table 1).

 delayed rice heading and maturity had no significant effect on grain yield total-N uptake was similar over time

3 weeks beyond the 5-leaf stage

- fertilizer-N uptake increased over time
- native soil-N uptake decreased slightly over time
- no information on effect of delaying past 3 weeks

OBJECTIVE AND HYPOTHESIS

- Our objective was to determine the effect of delaying (beyond 3 weeks) preflood-N fertilizer and flooding application beyond the 5-leaf stage on rice growth, N uptake, grain yield, and selected yield components of rice grown on silt loam soils;
- □ Based on previous research we hypothesized that there would be no yield reduction when preflood-N and flood application were delayed 21 days beyond the current Arkansas recommended application time but further delays would cause irreversible yield loss.

MATERIALS AND METHODS

□ Two field experiments conducted in 2015 Calhoun silt loam, planted on April 8 at the Pine

Photo 1. Research plots showing urea applied to a dry soil before flooding.

 Table 3. Regression coefficients for grain yield as
 affected by N rate and application time.

.	N rate	.	Linear	Quadratic
Location	(kg N ha^{-1})	Intercept	coefficient	coefficient
PTRS	0	-2241	21.49	-0.0157
	45	-798	21.93	-0.0157
	90	1354	20.89	-0.0157
	135	3890	18.03	-0.0157
	180	4427	17.44	-0.0157
RREC	0	863	20.08	-0.0210
	45	4321	11.84	-0.0126
	90	5875	8.62	-0.0085
	135	7450	8.17	-0.0081
	180	7233	9.82	-0.0091
	ka ha-1 - i	ntercent ⊥	$I_{inegr(v)} \perp ($	$\operatorname{Juadratic}(\mathbf{v}^2)$
Photo 2. E rice develo	xample of b pment and	DD10 (D l manage	D50) pred ement.	ictions for
	University of Arka	ansas Cooperatio	ve Extension Servi	ce
Tyler Richmond 1366 West Althe	eimer Drive	CICE DDSU Repor	May 29, 201 County: St_ Variety: Ro	5 10:43 Francis
Field: flood to Emergence date:	ime trial MJC : 4/19		(1 acres) Fi DD50 weather	eld # 4 zone: 6
**** Predicte	ed dates for timing	specific manage	ement practices in	rice ****
Beginning and (Optimum Tillering:	Apply Early/Pr	eflood N	5/11 - 5/20
Final recommend	ded time to apply p	reflood N if ea	rly N delayed	6/ 3
Rice Water Weev High ris Roy J is rated Have soil dri	vil Alert: c of infestation, at susceptible for str ied between	t flood scout f raighthead.	irst 7 days for le	5/20 - 5/30 af scars. 6/ 4 - 6/19
Begin checking	for beginning of in	nternode elonga	tion	6/16
Apply 1st midse (May apply all	eason N split betwee midseason N as a si	ation:	on)	6/23 6/17 - 6/23
Scout for sheat (Roy J is rated	th blight symptoms*. i moderately suscept	tible for sheat	h blight.)	6/16 - 7/19
Apply Tilt for Roy J rated ver	kernel smut prevent ry susceptible for }	tion* kernel smut; tro	eatment recommende	7/7-7/19 d.
Critical scouts (Roy J is rated 1st critical 2nd critical * See explanat	ing time for blast s d susceptible for bl stage (approximate) stage (approximate) tion for disease con	symptoms* last.)) for fungicide) for fungicide ntrol measures	application* application* in MP192	6/16 - 7/25 7/17 7/25
Scout for rice	stink bug between:			7/24 - 8/27
Predicted date	for 50% Heading:			7/23
Draining field				8/17
Approximate tim	ne or 20% grain mois	scure:		8/27
Apply Ricestar Apply Regiment	Between:			5/2 - 6/16 5/7 - 6/16

Fig. 3. Grain yield as affected by N rate and application time at the PTRS.

● 0 kg N ha⁻¹ ○ 45 kg N ha⁻¹ ▼ 90 kg N ha⁻¹ △ 135 kg N ha⁻¹ ■ 180 kg N ha⁻¹

The dramatic increase in soil-N uptake measured at the PTRS (Fig. 1) was not observed at the RREC (Fig. 2).

Grain yield

- At both sites, grain yield was a nonlinear response to fertilization and flood time that depended on preflood-N rate (Table 3).
- At the PTRS, the cumulative DD10 that produced peak yield for each N rate decreased as N rate increased (Fig. 3). Maximal yield was produced at 555 (180 kg N ha⁻¹) to 684 (0 kg N ha⁻¹) DD10 units.
- At the RREC, the cumulative DD10 that produced peak yield for each N rate increased as N rate increased (Fig. 4). Maximal yield was produced at 478 (0 kg N ha⁻¹) to 540 (180 kg N ha⁻¹) DD10 units.

Other observations (data not shown)

Delaying N and flood timing decreased tiller number but individual panicles produced a greater number of seeds and maturity was delayed.

PRACTICAL APPLICATION

- Tree Research Station (PTRS).
- Dewitt silt loam, planted on April 30 at the Rice Research and Extension Center (RREC).
- Roy J rice cultivar
- □ NBPT-treated urea rates
 - ◆ 0, 45, 90, 135, 180 kg N ha⁻¹
- □ Preflood-N application times (Table 1)
 - PTRS (6 flood times) & RREC (5 flood times)
- Measurements taken
 - Aboveground biomass at early heading for N uptake
 - Grain yield
- □ Statistical analysis
 - ✤ RCB, split-plot design with 4 replicates
 - Subplot: 5 urea-N rates
 - Replicate data regressed across DD10s accumulated at each preflood fertilizer-N application time.
 - Model allowed for linear and quadratic terms of flood times while the coefficients were allowed to depend on urea-N rate.

 Table 1. Degree day (DD10) accumulations and dates

of urea-N application for two field sites in 2015. PTRS RREC

- Research with the Roy J rice cultivar suggests that fertilizer-N recovery efficiency is not affected by delaying fertilization and flooding beyond the 5leaf stage (within the scope of this study).
- Yields $\pm 5\%$ of maximum were produced when fertilization and flooding were performed from 380 to 730 DD10 units with the peak at about 550 DD10s.
- Results for other cultivars (not shown) at each site showed yield patterns similar to that described for Roy J, but additional site-years are needed to confirm the consistency of response under different annual growth conditions and soil-N availabilities. Growers should follow current recommendations until guidelines are updated with results from this project.

LITERATURE CITED

□ Norman, R.J., R.S. Helms, and B.R. Wells. 1992. Influence of delaying flood and preflood nitrogen application on dry-seeded rice. Fert. Res. J. 32:55-59. Wilson, C.E., Jr., C.C., R.J. Norman, and B.R. Wells. 1989. Seasonal uptake patterns of fertilizer N effect in

