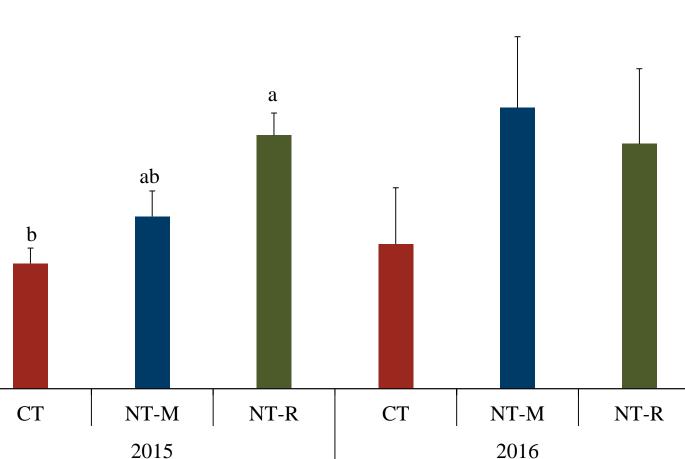
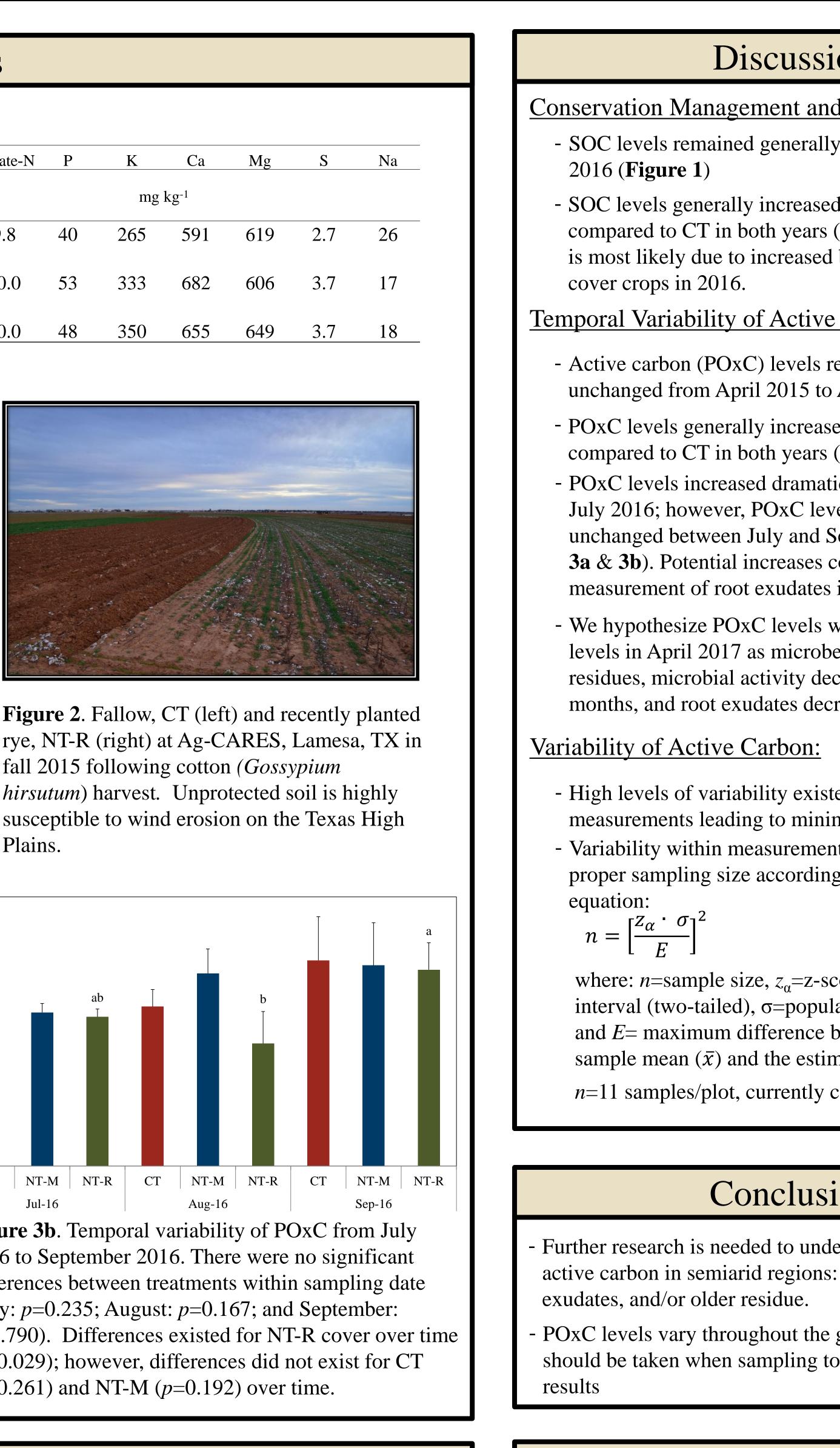
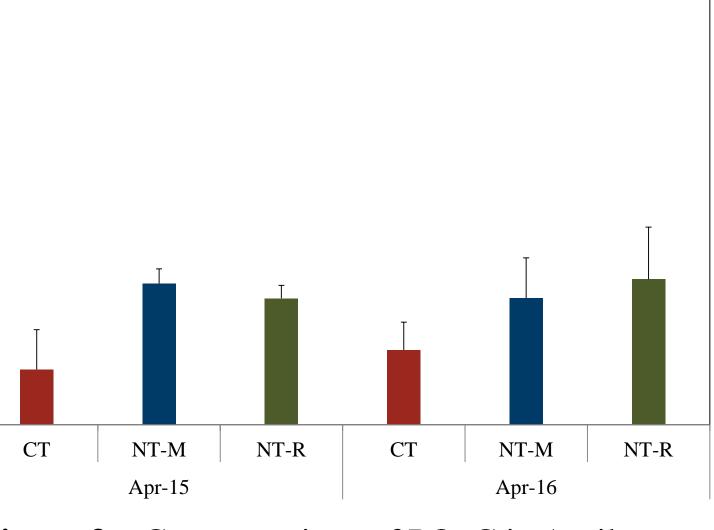


Impact of conservation management practices on soil carbon fractions on the Texas High Plains

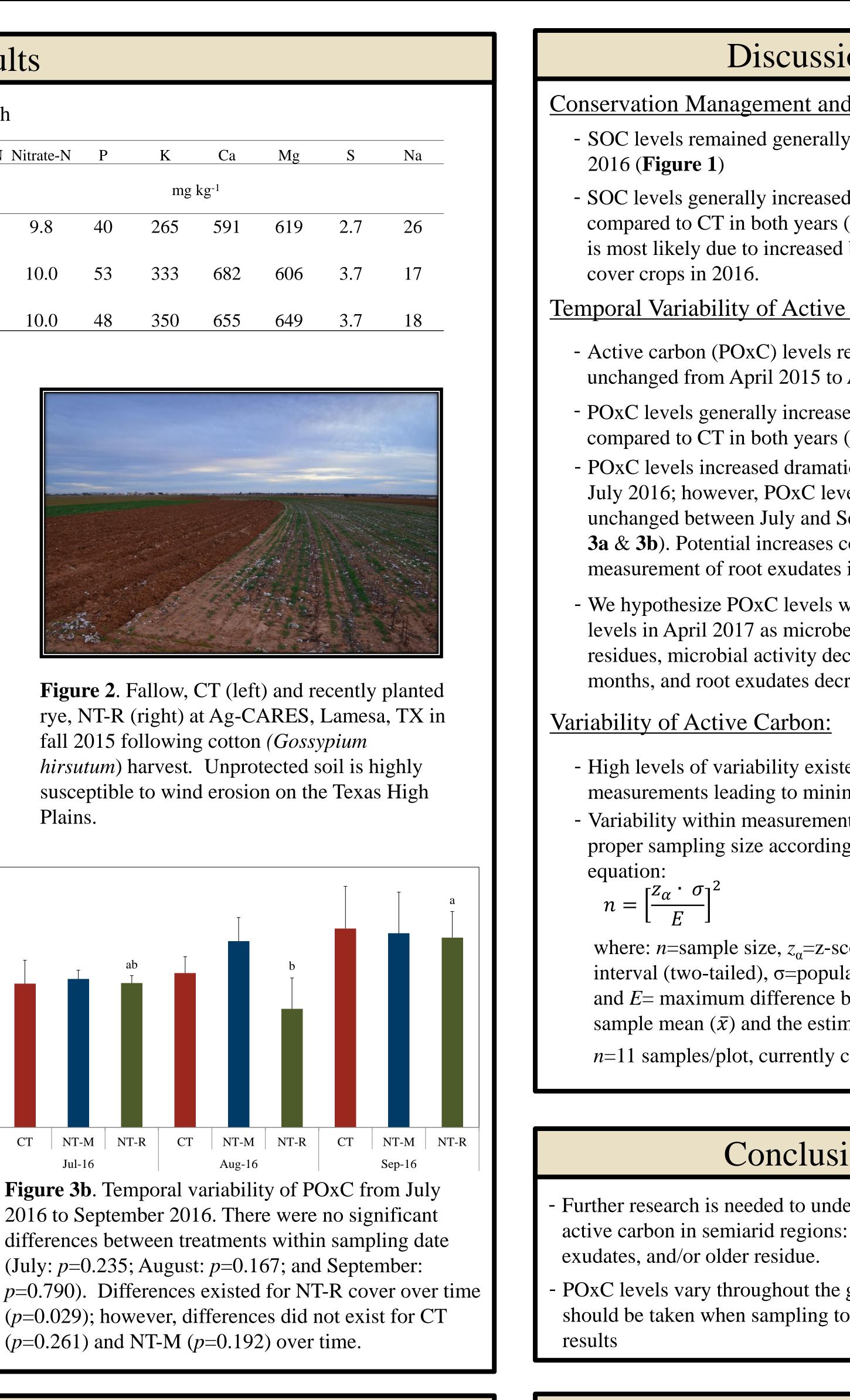

TEXAS TECH UNIVERSITY Department of Plant & Soil Science

Joseph A. Burke¹, Katie L. Lewis^{1,2}, & Paul B. DeLaune³


¹Texas Tech University, Lubbock, TX²Texas A&M AgriLife Research, Lubbock, TX³Texas A&M AgriLife Research, Vernon, TX


Introduction	
 <u>The Challenges:</u> Minimal soil organic matter (OM) levels, extreme climate variability, intensive tillage, and cotton monoculture cropping systems have led to degraded soils Dwindling water resources from the Ogallala Aquifer are forcing farmers to consider alternative cropping systems Limited information is available on active carbon (POxC) variability throughout a growing season <u>The Opportunities:</u> Soil health management can potentially improve wateruse efficiency and reduce top soil loss by increasing OM levels and subsequently aggregation Prospects for additional research funding in soil health management and monitoring Soils in semiarid environments with limited SOC have the potential to store atmospheric C (Bronson et al., 2004) 	Table Manager Practi CT NT-R NT-M
<u>The Objective:</u> - Determine temporal variability of soil POxC fractions	0
Materials and Methods	Figu
 <u>Research Site:</u> Location: Agricultural Complex for Advanced Research and Extension Systems (Ag-CARES), Lamesa, TX Soil Classification: Amarillo fine sandy loam; Fine- loamy, mixed, superactive, thermic Aridic Paleustalfs <u>Experimental Design:</u> RCBD arrangement of treatments within plots (3 reps.) <i>Tillage Treatments</i>: Conventional Tillage (CT) No-Tillage (NT) <i>Cover Crop Treatments</i>: No Cover (control) Rye Cover (Secale cereale) Mixed Cover: Hairy Vetch (Vicia villosa), Winter Pea (Pinsum sativum x arvense), Rye (Secale cereale), and Radish (Raphanus sativus) <i>Measurements</i>: Routine soil analysis Active Carbon (POxC), Weil et al., 2003 Total organic carbon (TOC), McGeenhan and Naylor, 1988 <u>Statistical Analysis</u>: Means separation was performed using Fisher's LSD (α = 0.05) after treatment effect significance was established using GLIMMIX procedure in SAS 9.3 	(SO Diffe (p=0) Con Cov (p=0) Cov (p
Literature Review	
 Bronson, K.F., T.M. Zobeck, T.T. Chua, V. Acosta-Martinez, R. Scott van Pelt, and J.D. Booker. 2004. Carbon and nitrogen pools of Southern High Plains cropland and grassland soils. Soil Sci. Soc. Amer. J. 68: 1695-1704. McGeenhan, S.L. and D.V. Naylor. 1988. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 15:759-772. Weil, R.R., K.R. Islam, M.A. Stine, J.B. Gruver, and S.E. Samson-Liebig. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Amer. J. Alternative Agric. 18: 3-17. 	 Dustin k managen Colten C McDona laborato Partson analysis

	Results											
ble 1. Soil Characterization (2015) at 0-16 cm Depth												
agement	рН	EC	Org C	Total C	Total N	Nitrate-N	Р	K	Ca			
ractice		µmhos cm-1	g kg-1				mg kg-1					
CT	7.7	131	1.9	3.0	370	9.8	40	265	591	(
T-R	7.6	154	3.6	4.2	572	10.0	53	333	682			
Г-М	7.6	148	2.7	3.9	536	10.0	48	350	655			



igure 1. Concentrations of soil organic carbon SOC) in April 2015 and April 2016. Differences existed between treatments in 2015 *p*=0.024) but not in 2016 (*p*=0.111). CT: Conventional Tillage; NT-M: No-Tillage-Mixed over; and NT-R: No-Tillage-Rye Cover.

igure 3a. Concentrations of POxC in April 015 and April 2016. Differences did not exist etween treatments within sampling years 2015: *p*=0.397; 2016 *p*=0.498) and between reatments over time (CT: *p*=0.152; NT-M: =0.757; NT-R: *p*=0.583).

Acknowledgements

- n Kelley, Research Assistant, for farm gement and technical assistance n Crowell, Corbin Henzler, Parker Lewis, Mark onald, and Ray White for sample collection and atory assistance
- on Mubvumba and Bill Coufal for laboratory
- Dr. Lindsey Slaughter (TTU-PSS) for making her lab available to us for analysis
- Texas A&M AgriLife Extension Service Soil, Water, and Forage Testing Laboratory, College Station, TX
- Funding Source: Texas State Support Cotton Inc.

Discussion

Conservation Management and Soil Carbon:

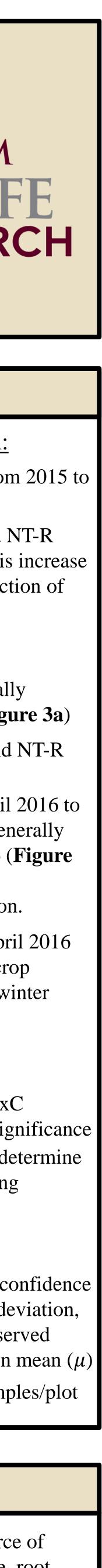
- SOC levels remained generally unchanged from 2015 to
- SOC levels generally increased for NT-M and NT-R compared to CT in both years (Figure 1). This increase is most likely due to increased biomass production of

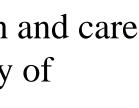
Temporal Variability of Active Carbon:

- Active carbon (POxC) levels remained generally unchanged from April 2015 to April 2016 (**Figure 3a**)
- POxC levels generally increased for NT-M and NT-R compared to CT in both years (Figure 3a)
- POxC levels increased dramatically from April 2016 to July 2016; however, POxC levels remained generally unchanged between July and September 2016 (Figure **3a** & **3b**). Potential increases could be due to measurement of root exudates in POxC fraction.
- We hypothesize POxC levels will return to April 2016 levels in April 2017 as microbes decompose crop residues, microbial activity decreases during winter months, and root exudates decrease.
- High levels of variability existed between POxC measurements leading to minimal statistical significance
- Variability within measurements was used to determine proper sampling size according to the following

where: *n*=sample size, z_{α} =z-score at specific confidence interval (two-tailed), σ =population standard deviation, and *E*= maximum difference between the observed sample mean (\bar{x}) and the estimated population mean (μ)

n=11 samples/plot, currently collecting 6 samples/plot


Conclusion


- Further research is needed to understand the source of active carbon in semiarid regions: current residue, root
- POxC levels vary throughout the growing season and care should be taken when sampling to ensure validity of

Contact Us

- Joseph A. Burke
- joseph.burke@ttu.edu
- T 806.834.7430
- Dr. Katie Lewis katie.lewis@ag.tamu.edu
- T 806.746.6101

