

Integrating Winter Annual Cereal Rye or Triticale into a Corn forage Biofuel Production System

Pavani Tumbalam, Kaitlyn Hard, and Kurt Thelen*

MICHIGAN STATE UNIVERSITY

Introduction: Integrating cover crops into the corn (Zea mays L.) forage-production system could enhance growers' profitability and improve ecosystem services. Field plots were established at two locations in Michigan during 2012-14 to evaluate ethanol production, estimate carbon and energy balance, and the economics of corn forage plus cover crop, cropping systems. In the 2012-13 crop cycle, the cereal rye (Secale cereale L.), and triticale (Triticale hexaploide Lart.), cover crops increased cropping system biomass yield by 44%, and total ethanol yield by 28% relative to the no-cover control. During the 2012-13 cycle, cover crops provided sufficient biomass to result in a profitable harvest as a biofuel feedstock. However, following a harsh winter, such as that experienced in the 2013-14 cycle, cover crop yield was compromised to the point that harvest was not economically justified. Incorporating cover crops into a corn forage cropping system increased total biomass and potential biofuel yield and generated a very favorable net ecosystem carbon and energy balance.

Objectives: To evaluate the biomass and ethanol yield of a corn forage plus winter annual cover crop, double-crop system. Field plots established were used to evaluate ethanol production, estimate carbon and energy balance, and the economics of corn forage plus cover crop, cropping systems.

Materials and Methods:

- Four treatments were evaluated at two locations (E. Lansing and MSU/KBS) using a randomized complete block design with four replications.
- In 2012 and 2013 silage corn was no-till planted.
- All treatments were managed using the same fertility, weed, and pest control practices.
- Corn was harvested at the recommended stage for corn silage.
- Cereal rye, and triticale were no-till drilled in the corn silage stubble after harvest.
- Following spring rye harvest, glyphosate herbicide was used to control rye regrowth.

Timeline for field activities, 2012 – 2014 growing cycles

Net cropping system carbon balance, energy balance, and revenue return to land and management for the 2012-13 and 2013-14 crop cycles as affected by cover crop species. Data are averaged across the KBS and E. Lansing locations

Crop System		2012-13			2013-14				
	Corn	Cover	Total	Corn	Cover	Total			
	Carbon balance (sequestration) CO ₂ eq kg ha ⁻¹								
Corn forage + no cover	2954a	163c†	3117c	8897a	-12c	8885a			
Corn forage + cereal rye	2831a	1585b	4416b	7344a	383a	7727a			
Corn forage + triticale	3148a	2295a	5443a	7594a	260b	7854a			
	Energy balance MJ ha ⁻¹								
Corn forage + no cover	48197a	1632c	49829c	123342a	-496b	122846a			
Corn forage + cereal rye	46269a	15490b	61760b	102654a	1834a	104488a			
Corn forage + triticale	50658a	24483a	75141a	106451a	360b	106811a			

Randomized complete block design field plot layout for the four cropping systems

Corn silage, cover crop, and total system ethanol yield for the 2012-13 and 2013-14 crop cycles as affected by cover crop species and arowing cycle (P=0.05)

-----Net return to land and management \$ ha⁻¹-----

Corn forage + no cover	-60a	-151b†	-211b	1132a	-186a	946a
Corn forage + cereal rye	-44a	103a	59a	937a	-220b	717a
Corn forage + triticale	-22a	145a	122a	916a	-316c	600a

Results and Conclusions:

- Incorporating cover crops into a corn forage cropping system improved ecosystem services while increasing total biomass and potential biofuel yield.
- This experiment demonstrated that a corn forage plus winter annual cover crop, cropping system was plausible under growing conditions associated with the U.S. Great Lakes Region.
- The inclusion of the winter annual cover crop significantly de-risked the cropping system with regard to total biomass and ethanol yield.
- In the 2012-13 crop cycle, the cereal rye and triticale cover crops increased cropping system biomass yield by 44% and total ethanol yield by 28% relative to the no-cover control.
- The corn forage biomass had higher conversion efficiency to ethanol relative to the

crop cycles as anected by cover crop species and growing cycle (r =0.00)								 cover crops because of the presence of grain component in the corn forage biomass A corn forage plus cover crop bioenergy cropping system generated a very favorabl 						
Crop System	2012-13	2013-14	Crop System	2012-13 2013-14		Crop System	2012-13		2013-14			4	net ecosystem carbon balance and also a very favorable net energy balance.	
Cor	rn Cover Tot	al Corn Cover Total		Corn	Cover	Corn Cover		Corn	Cover	Total	Corn	Cover	Total	• In a typical Michigan winter-spring cycle, such as that experienced in 2012-13, cover
	dm Mg h	ectare-1			Liter ethan	ol Mg ⁻¹				Liter eth	anol hectare	e ⁻¹		crops provided sufficient biomass to result in a profitable harvest as a biofuel
Corn forage 8.0a + no cover	a† 0.7d 8.7c	19.5a 0.1c 19.8a	Corn forage + no cover	289.6a†	161.5a	284.6a 130.2b	Corn forage + no cover	2385.3a†	113.2c	2497.5c	5584.3a	22.44c	5603.0a	 feedstock. However, following a harsh winter, such as that experienced in the 2013-14 cycle,
Corn forage 8.3a + cereal rye	a 6.5b 14.8b	o 17.8a 1.6a 19.4a	Corn forage + cereal rye	274.1a	138.5a	267.0b 194.0a	Corn forage + cereal rye	2301.0a	893.3b	3199.0b	4705.0a	a 312.4a	5013.7a	cover crop yield was compromised to the point that harvest was not economically justified.
Corn forage 8.5a + triticale	a 8.1a 16.6a	n 17.5a 1.2b 18.8a	Corn forage + triticale	285.8a	156.0a	287.1a 208.7a	Corn forage + triticale	2488.1a	1276.8a	3769.6a	4864.0a	a 249.7b	5116.6a	Acknowledgements This work was funded by the Corn Marketing Program of Michigan and in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830).

