
Using Land-Use Change, Soil Characteristics, and a Semi-Automated on-Line GIS Database to Inventory Carolina Bays Jeffrey G. White¹, Dana Sullivan², and Michael J. Vepraskas¹

Introduction

- Carolina Bay wetlands and lakes are numerous NW SE oriented elliptical geomorphic features widely distributed over much of the southeastern US Coastal Plain (Fig. 1).
- Bays are important to: wetland conservation and restoration; water quality; C sequestration; ecosystem diversity; and habitat for diverse and unique flora/fauna.
- Other than a few Bay lakes, most Bays were originally forested, but many Bays have been logged and drained for agriculture, forestry, and other land uses (Fig. 2).
- While generally productive, converted Bays are good candidates for restoration, although there are concerns about agrichemical (e.g., P) release to ground and surface waters.
- Only South Carolina and Georgia have statewide (and likely incomplete) inventories.
- There has been little systematic effort to inventory Bays, and digitizing them by hand is very laborious.

near Myrtle Beach, SC : "discovery" of the with "vestigial" or "ghost" Bays visible **Carolina Bays (Fairchild Aerial Survey)**

Fig. 2. Mixed land-use of Carolina Bays even after substantial land-use change.

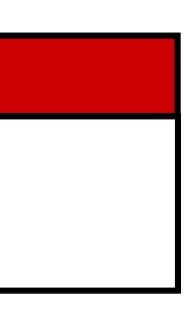
Objectives

- Develop novel methods to locate/identify Carolina Bays
- Delineate Bays using a semi-automated on-line digitizing tool
- Characterize attributes of delineated Bays

Materials & Methods

- Postulated: Land use in many, if not most, Bays had changed during the past 40 years.
- Postulated: Bays comprise a limited number of soil map units.
- Used Bladen, Co., NC as the test bed, characterized in the literature as "Bay-dense"
- Supervised classification of land-use from decadal Landsat imagery: 1972 2010 (Table 1)
- Quantified land-use change decade to decade
- Downloaded the 812 (31,409 ha) "existing" Bladen Co. Bays from a supervised wiki database, the Cintos Research: "Collaborative Survey of Carolina Bay Landforms"
- Defined "Common Bay Soils" as any <u>SSURGO</u> soil map unit present in >1% of existing Bay coverage
- Developed Land-Use Change/Common Carolina Bay Soil algorithm (Fig. 3a) to find Bays
- Used Cintos Research semi-automated digitizing tools to delineate new Bays in Google Earth (Fig. 3b & 3c) (<u>http://www.cintos.org/Survey/Process/index.html</u>)

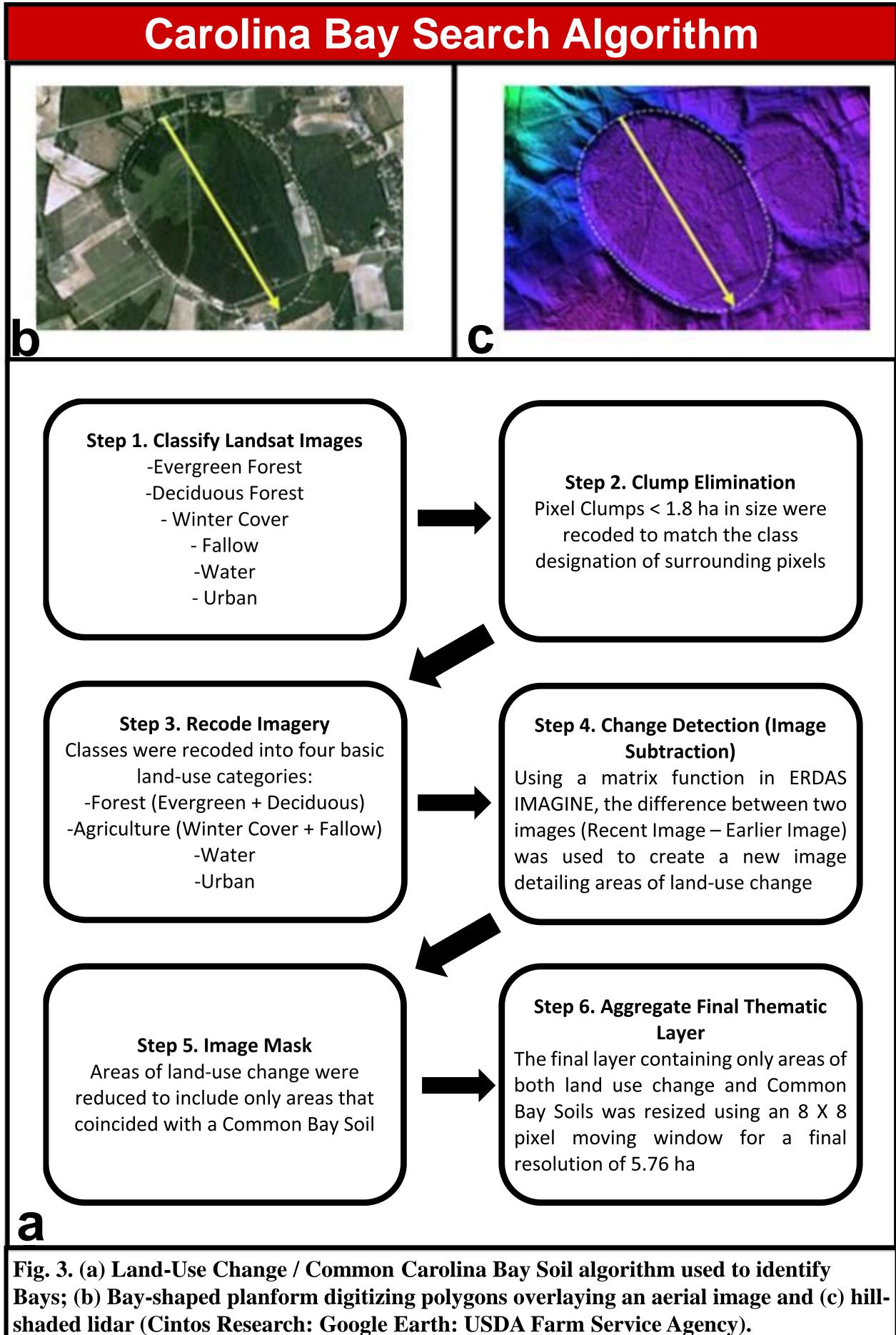
 Table 1. Landsat
 Satellites and sensors used in the study along with sensor bands, spectral


properties, and spatial resolutions.

Resolution	Spectrum	Wavelength (µm)	Bands	Satellite/Sensor Year	
()	Green	0.5 - 0.6	4	Landsat 1	
60 magamulad	0.6 - 0.7 Red	0.6 - 0.7	5	Multispectral	
resampled 79 X 5	Red edge	0.7 - 0.8	6	Scanner 1972	
13 A S	NIR	0.8 - 1.1	7		
	Blue	0.45 - 0.52	1		
	Green	0.52 - 0.60	2	Landsat 5	
30	Red	0.63 – 0.69	3	Thematic Mapper 1984, 1991,	
	NIR	0.76 - 0.90	4		
1.55 – 1.75 Shortwave IR	1.55 - 1.75	5	1984, 1991, 2000, 2010		
30 resampled	Thermal IR	10.4 - 12.5	6	2000, 2010	

NC STATE UNIVERSITY

¹Dept. of Crop & Soil Sciences; ²TurfScout, LLC., Greensboro, NC



n (m)

d from 57

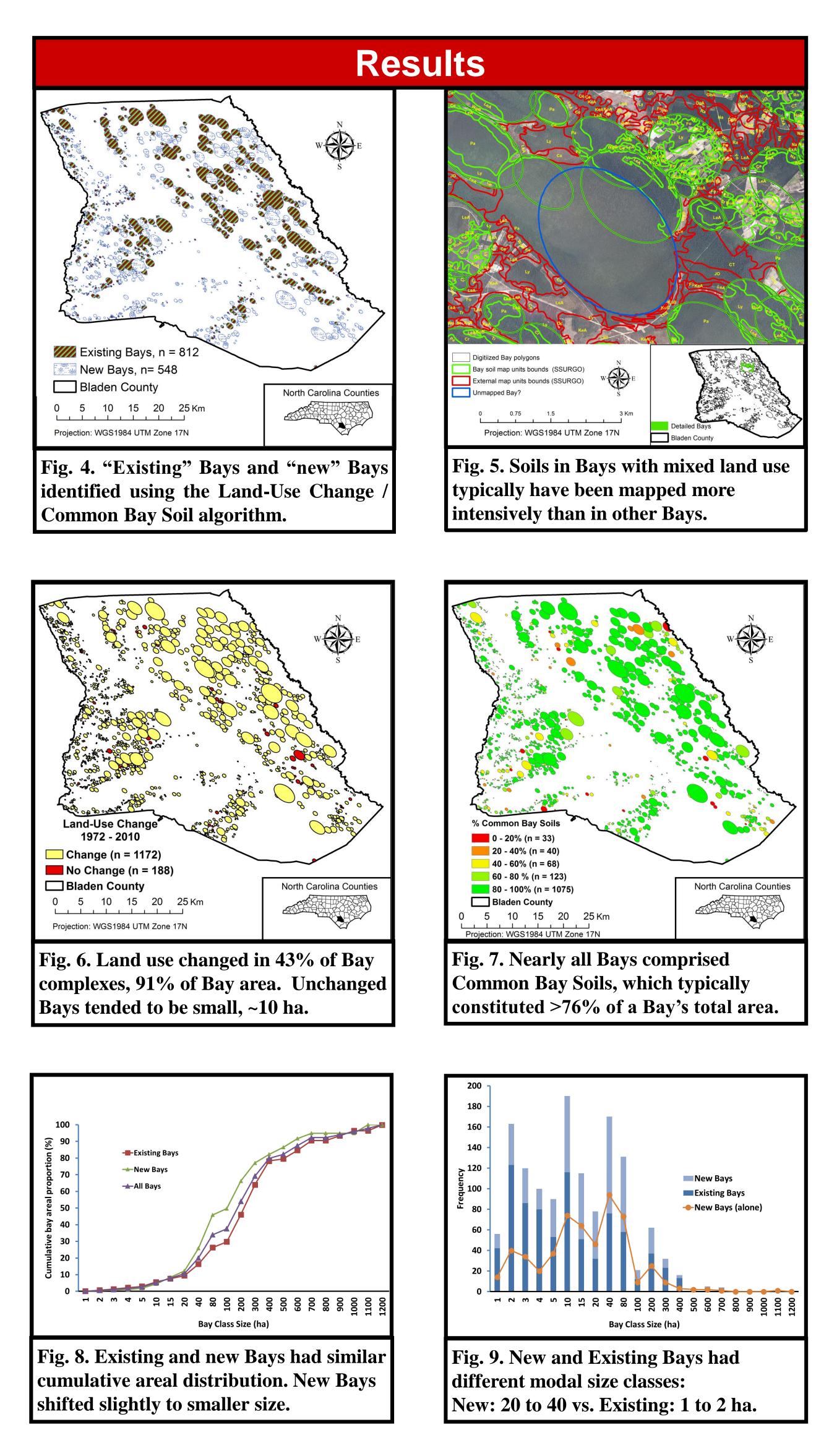
from 120

Results

Table 2. Common Carolina Bay Soils (soils representing >1% of the Bay coverage), area, percentage of total area (%), and whether hydric. Common Bay Soils present only in the new Bays are *italicized*. Common Bay soils cover ~67% of the county.

Soil Series Name	MuSym	Area (ha)	% of Total	Hydric
Butters fine sand, 0 to 2 percent slopes	BuA	486	1.0	Ν
Autryville loamy sand, 0 to 3 percent slopes	AuA	504	1.0	Ν
Lynchburg fine sandy loam	Ln	574	1.2	Y
Croatan muck, frequently flooded	СТ	609	1.3	Y
Lakeland sand, 1 to 7 percent slope	LaB	789	1.6	Y
Norfolk loamy sand, 0 to 2 percent slope	NoA	864	1.8	Y
Johnston mucky loam	JO	926	1.9	Y
Foreston loamy sand	Fo	935	1.9	Y
Goldsboro sandy loam, 0 to 3 percent slope	GbA	1,016	2.1	Y
Woodington loamy sand	Wo	1,405	2.9	Y
Pantego loam	Ре	1,552	3.2	Y
Centenary sand	Ce	1,566	3.2	Y
Rains sandy loam	Ra	2,164	4.5	Y
Water	W	2,357	4.9	NA
Croatan muck, rarely flooded	Cr	2,455	5.1	Y
Leon sand, 0 to 3 percent slope	LeA	3,186	6.6	Y
Torhunta mucky sandy loam	Tr	3,457	7.1	Y
Lynn Haven	Ly	6,777	14.0	Y
Pamlico muck, rarely flooded	Ра	11,449	23.6	Y

Step 2. Clump Elimination Pixel Clumps < 1.8 ha in size were


recoded to match the class designation of surrounding pixels

Step 4. Change Detection (Image Subtraction)

Using a matrix function in ERDAS IMAGINE, the difference between two images (Recent Image – Earlier Image) was used to create a new image detailing areas of land-use change

Step 6. Aggregate Final Thematic Layer

The final layer containing only areas of both land use change and Common Bay Soils was resized using an 8 X 8 pixel moving window for a final

Conclusions

- Methods proved effective and could be used to more rapidly and accurately inventory and characterize Bays across their full extent, but doing so remains a formidable task: we estimated that as many as 478 small Bays remain undiscovered in Bladen Co. alone.
- Data used for inventory (SSURGO/Landsat) are readily available, as are digitizing tools at the Cintos Research "Collaborative Survey of Carolina Bay Landforms".
- Carolina Bays provide many crucial ecosystem services. Of the converted Bays, many are in non-urban land uses and prime candidates for wetland restoration.
- Given the potential impact that Bay conservation/restoration can have on soil/water quality and ecosystem diversity, a detailed Carolina Bay inventory is a necessity.

Acknowledgements

- We thank Michael Davias of "<u>Cintos Research: Citizen Scientists at Work</u>" for assistance with his "Collaborative Survey of Carolina Bay Landforms."
- This research was funded in part by a grant from the USDA NIFA
- Contact: <u>jeff_white@ncsu.edu</u>; 919-515-2389. In press: Wetlands.

