Potassium Fertilizer Rate and Timing Effect on Recovering Yield Loss in Potassium Deficient Soybean

D.A. Sites, N.A. Slaton, L.C. Purcell, T.L. Roberts, R.E. DeLong, D.D. Cox, and T.L. Richmond

Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR

Summary Statement: Seed yields of irrigated soybean [Glycine max (L.) Merr.] responded similarly (±5%) to granular fertilizer-K applied from preplant to the R2 stage with a quadratic model providing an accurate assessment of yield response across time expressed as days after planting. Yield response information will aid mid- to late-season fertilization decisions, especially when used with tissue analysis.

INTRODUCTION

- Irrigated soybean grown on silt loam soils in Arkansas typically respond to K fertilization. Limited research has been conducted to determine how late in the soybean growth cycle granular fertilizer-K can be applied to prevent yield loss from K deficiency or obtain an economic yield response to fertilizer-K.
- The literature contains few examples describing soybean yield response to in-season K fertilization.

FERTILIZER-K APPLICATION TIMES, R2 LEAF-K CONCENTRATION, AND YIELD RESPONSE TO FERTILIZER-K

LEAF-K CONCENTRATION

- Leaf-K concentration shows soybean was K deficient in plots that had received no fertilizer-K by R2 at each site (Tables 1-2).
- Soybean that received fertilizer-K preplant or the V4 stage contained low (1.5%) to sufficient (>1.8%) leaf-K concentrations (Table 1) that were statistically equal to soybean that received an equal K rate

GRAIN YIELD

- ✤ Leaf-tissue K concentration at the R2 stage indicated soybean was K deficient.
- Significant seed yield increases were obtained from preplant applied fertilizer-K at each site year (Figs. 1-2)
- Seed yield declined nonlinearly as fertilizer-K application time was delayed beyond the R2 growth stage. Seed yield declined quite rapidly when K application was delayed beyond the R3 to R4 growth stage.

CONCLUSIONS

- Maximum ($\pm 5\%$) soybean yield was produced by fertilizer-K applied from before planting to the R2 stage each year (54 DAP in 2015 and 69 DAP in 2016).
- > Yield increases may be obtained from fertilizer-K applied up to the R5 stage.
- \succ In areas where soybean stand establishment is a risk, application of

OBJECTIVES

- The primary objective was to evaluate soybean yield response to fertilizer-K application time on K-deficient silt loams.
- Secondary objectives included evaluating the effect of fertilizer-K application time on fertilizer-K recovery (by difference) and trifoliolate leaf-K concentration.

Hypothesis

✓ Soybean would respond positively and equally to fertilizer-K applied from preplant through vegetative growth and the benefit would gradually decline as fertilizer-K was delayed thru blooming and pod set. Fertilizer-K applied after R4 stage would not benefit yield.

MATERIALS AND METHODS

***** 2015 Trial

 \succ 56 kg K ha⁻¹ as muriate of potash (500 g K kg⁻¹) applied nine times during the season expressed as days after planting [DAP, preplant K was designed as at planting (9 June) and no fertilizer-K was labeled as harvest 121 DAP; Table 1]

preplant. Root uptake of soil surfaceapplied K appears to be quite rapid by irrigated soybean.

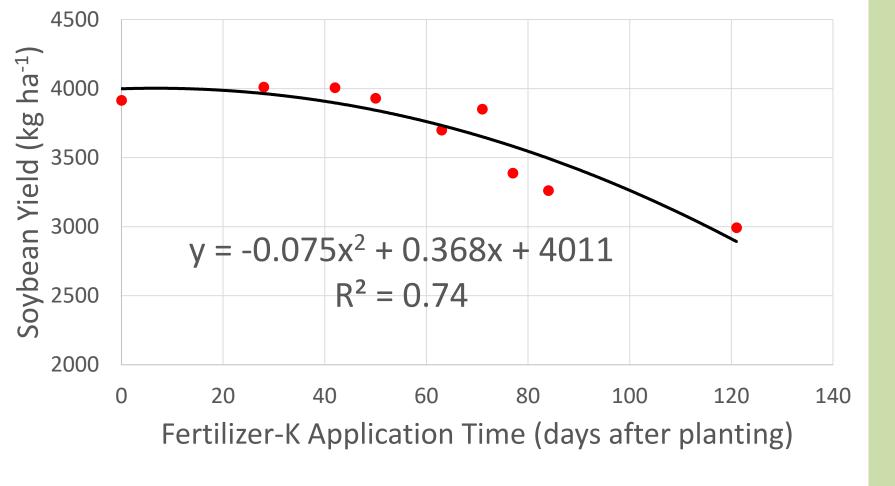
 Table 1. Dates of application, soybean
growth stage, and leaf-K concentration at R2 stage (samples collected on 29 July)

July).				
		K		29-Jul
DAP	Rate	Applied	Stage	Leaf-K
d	kg K ha ⁻¹	d-mo		%K
0	56	22-Apr		1.26
0	112	22-Apr		1.53
28	56	21-Jul	V4	1.35
42	56	21-Jul	R1-2	1.36
50	56	29-Jul	R2.0	0.99
63	56	11-Aug	R4.0	1.01
71	56	19-Aug	R5.0	0.97
77	56	25-Aug	R5.5	1.01
84	56	1-Sep	R6.0	0.97
121	0		R8.0	0.97
		LS	0.08	
121	0	 LS	R8.0	

 Table 2. Dates of application, soybean
growth stage, and leaf-K concentrations at R2 stage (samples collected 29 June). 29-Jun DAP Applied Stage Rate Leaf-K kg K ha⁻¹ %K d-mo d 1.62 0 56 5-May --112 () 5-May 1.88 --0 168 5-May 2.00 ___ 39 112 V4 1.72 14-Jun 54 112 1.06 29-Jun R1-2 112 R2.0 11-Jul 1.06 66 81 112 26-Jul R4.0 1.06 88 112 1.00 Aug-3 R5.0 1.00 103 112 Aug-18 R6.0

fertilizer-K may be delayed..

 \blacktriangleright Root uptake of the V4 to R1-2 stage fertilizer-K application was rapid as leaf-K concentrations at R2 were equal to (2015) or slightly less (2016) than leaf-K concentrations of plants receiving preplant fertilizer-K. In 2016, additional leaf and petiole (separate tissues) samples were collected 2 wk after each K application. In-season monitoring of soybean leaf-K concentrations and application of fertilizer-


- K when concentrations are deficient may be an effective management practice, especially for high yield situations.
- Results do not support or refute whether foliar-application of low fertilizer-K rates is an practice equally effective as soilapplied fertilizer-K.
- > Each year maximal yield was produced by a fertilizer-K rate greater than the rate used

- \succ Calloway silt loam (pH = 7.7)
- > 43 (dry) and 31 (moist) mg Mehlich-3 K kg⁻¹ (0-10 cm)
- Pioneer 47T36R (38-cm wide rows)
- Randomized complete block design with each treatment replicated six times. Each replicate included three plots that received no fertilizer-K.

***** 2016 Trial

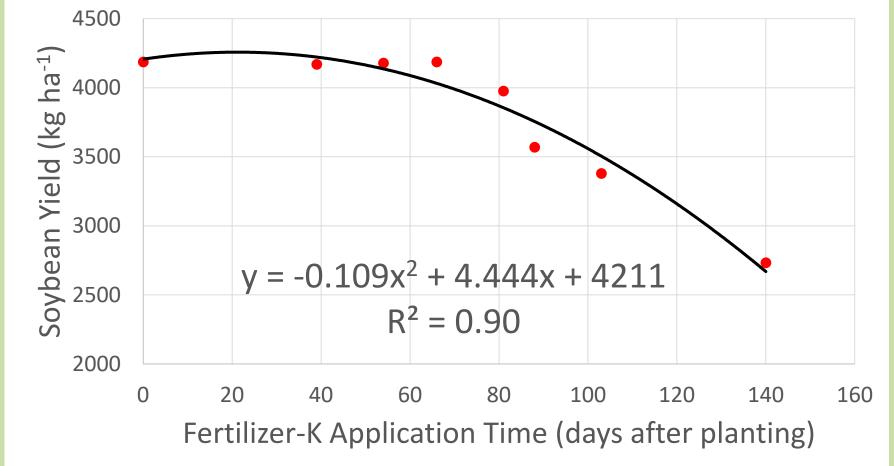

- \succ Calhoun silt loam (8.1 pH)
 - ✓ Armor 47-R70 planted 5 May (38-cm wide rows)
- ✓ 23 (moist) or 46 (dry) mg Mehlich-3 K kg⁻¹ (0-10 cm)
- Similar design as 2015 trial, except treatments replicated five times each and fertilizer-K applied at 112 kg K ha⁻¹ eight times during the season and compared to a high K standard of 168 kg K ha⁻¹ (preplant).
- > Preplant K was designated as at planting (5 May) and no fertilizer-K was labeled as harvest 140 DAP (Table 2).

Fig. 1. Soybean yield response to fertilizer-K application time in 2015 (see Table 1 for K application times).

140 **R8.0** 1.06 LSD0.10 0.12

Fig. 2. Soybean yield response to fertilizer-K application time in 2016 (see Table 2 for K application times).

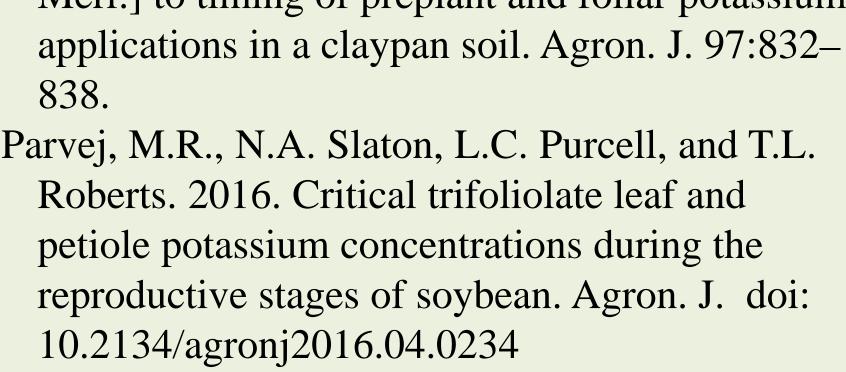
for in-season application. Thus, the results do not indicate whether maximal yield can be produced by mid- to late-season K fertilization.

Preliminary and Upcoming Results

- > Whole plant samples were collected at R6 from selected treatments in 2016 to evaluate aboveground-K content and fertilizer-K recovery for each K application. Analysis is not yet complete.
- > Additional site-years will be added to develop a robust yield trend across several K deficient situations.

ACKNOWLEDGMENTS Research was funded by the Arkansas Soybean Checkoff Program, The Mosaic Company, Fertilizer Tonnage Fees, and the University of Arkansas System DivRision of Agriculture.

REFERENCES


Nelson, K.A., P.P. Motavalli, and M. Nathan. 2005. Response of no-till soybean [*Glycine max* (L.) Merr.] to timing of preplant and foliar potassium

ANOVA and Regression Across Application Times

Replicate yield data regressed across DAP using linear or quadratic models. Sites analyzed separately. ANOVA was performed on leaf-K concentration at the R2 stage.

