Implications of Salvage Logging on Soil Organic Matter Physico-Chemical Protection and Ecosystem Carbon Stocks in Pine Beetle Infested Lodgepole Pine Forests

Bethany Avera^{1,2}, Chuck Rhoades³, M. Francesca Cotrufo¹

¹Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO; ²Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO; ³USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO

Introduction

- Mountain pine beetle (MPB) affected over 7 million ha of forest, primarily lodgepole pine (Pinus contorta), in western North America over the 1st decade of the 21st century¹
- Salvage logging increased in response to the high overstory mortality and as a result logging residue management has become an issue of concern². Physico-chemical protection of carbon (C) and nitrogen (N) in soil occurs
- through the formation of bonds between simple, microbially processed organic matter (OM) compounds and the mineral matrix. Impacts of salvage logging and residue management practices on soil C and N
- stocks, particularly on physico-chemical protection, and productivity are not known. Fractionating soil OM into component pools will provide a better understanding of potential long-term implications of management, by revealing changes in soil C and N stocks that may not be detectable by analyzing the bulk soil.
- Quantifying such changes associated with logging residue retention levels is critical as salvage logging and use of logging residues is of interest to the bioenergy industry.

Approach

4 Sites (Fraser Experimental Forest, Gore, State Forest, & Willow Creek) × 3 Units (or blocks) per site 12 independent reps per treatment

3 Treatments:

Riomass Retention (lop-and-scatter) Soil Analysis

- Collected Sept-Oct. 2015
- 6 soil cores 0-10 cm were taken per treatment plot and composited at the plot level
- Bulk soils were 2mm sieved, dried, ground and analyzed for %C, %N, Δ^{13} C, and Δ^{15} N on the EA-IRMS.
- A representative subsample was fractionated by the following method:

Samples were run on the EA-IRMS to measure %C, %N, δ^{13} C, and $\delta^{15}N$

Research Questions and Hypotheses

Q1: Does salvage logging MPB-killed stands result in significant differences in soil C and N stocks and protection? salvage logging result in significant differences in soil C

H1a: We anticipate no net losses of soil C and N stocks 6 years and N stocks and protection? after salvage logging.

- MPB-induced mortality had decreased new soil C inputs years prior due to differences in quantity and quality of inputs: to logging.
- Logging stimulated the sub-canopy, understory and regeneration allowing for new soil C inputs.

H1b: We anticipate increased soil organo-mineral protection 6 years after salvage logging.

Changes in abiotic conditions and fresh litter inputs may stimulate microbial processing and new mineral-associated organic matter formation (MAOM).

Q2: Does level of logging residue retention following

H2a: Changes anticipated relative to unharvested, control

Treatment	Inputs	LF	POM	MAOM
Logged + residue removal	Mostly needles	¥	\downarrow	Ŷ
Logged + residue retention	Boles, branches, and needles	↑	↑	No change

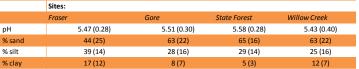
H2b: Logging with residue removal will have the greatest organomineral protection.

dominant

MPB, and

aspen in a

ogged unit.


regenerating

lodgepole and

stand, with high

overstory mortality due t

Table 1. Average (sd) of pH (n=12 per site) and soil texture (% sand, silt, and clay) (n=3 per site, measured only in the control unit of each block).

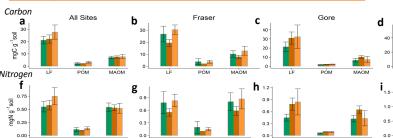


Fig. 3. C (a-e) and N (f-j) content averaged across all sites (a & f) and at each site (b-e & g-j)

in each of the SOM fractions.

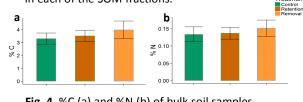


Fig. 4. %C (a) and %N (b) of bulk soil samples

Acknowledgements:

This work was funded by the Biomass Alliance Network of the Rockies, a USDA NIFA CAP Grant. To the USDA Forest Service and to the Colorado State Forest Service for access to sites. ² Miller, 2015 Science you can Use, USFS

Lodgepole Seedling Basal Area

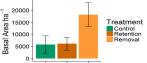
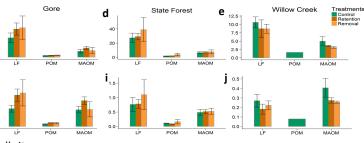



Fig. 2. Basal area per hectare of all lodgepole seedlings

Initial Discussion and Conclusions:

- Salvage logging beetle-killed lodgepole in CO does not appear to have a significant impact on bulk C and N stocks (Fig. 4)(Q1. H1a)
- Responses of the changes in C and N fractions in response to the treatments were highly variable (Fig. 3)(Q2, H2a)
- Site seemed to be more important than treatment in determining organo-mineral protection (Fig. 3)(Q1, H1b, Q2, H2b)
- We anticipate that texture is going to be critical for explaining site variability than response to treatment (Table 1)

References:

Treatments

Contact: Bethany.avera@gmail.com

¹ Hart et al., 2015 PNAS