Improved Surface Area Estimation Based on Surface Curvedness

Ramaprasad Kulkarni ${ }^{1}$, Jeffrey J. Rodriguez ${ }^{1}$, and Markus Tuller ${ }^{2}$

疋
The University
of ArIZONA。
${ }^{1}$ University of Arizona, Dept. of Electrical and Computer Engineering, Tucson, AZ
${ }^{2}$ University of Arizona, Dept. of Soil, Water and Environmental Science, Tucson, AZ

Introduction

Accurate determination of interfacial/surface areas in multiphase systems is of essence to enhance our understanding of multiphase flow and mass transfer processes in porous media. X-ray micro-CT provides promising means to estimate surface areas from three-dimensional segmented images (Fig.1).
Several classes of estimators have been proposed in literature, including methods that assign weights to specific voxel configurations, that reconstruct approximate surfaces with polygons or integrate surface voxels intersecting with a set of uniformly distributed lines. Especially, weightedvoxel based methods that determine weights by optimizing planes that approximate curved surfaces yield unsatisfactory estimates for planar surfaces when compared to simple surface-voxel-face counts.
To overcome this limitation, we present a new surface area (SA) present a new surface area (SA)
estimator that is based on surface estimator that is based on surface
curvedness computed from principal curvatures. A curvedness principal curvatures. A curvedness threshold is applied to discern
surface voxels with either curved surface voxels with either curved or planar surface neighborhoods.
While for voxels with curved While for voxels with curved neighborhoods a weighted-voxel
method is applied, voxels with method is applied, voxels with
planar neighborhoods are treated planar neighborhoods are treated with the
method.

Weighted Voxel Surface Area Estimator - Lindblad Weighted SA estimators are designed for discrete binary three-dimensional data representing object voxels and background voxels. They assign weights to different combinations of voxel configurations in either $\mathbf{2 \times 2 \times 2}$ or $\mathbf{3 \times 3 \times 3}$ neighborhoods, and determine the total surface area of an object by summing the weights of all voxels that are part of it.
Lindblad (2005) developed a method that determines optimal weights for all possible voxel configurations in a $2 \times 2 \times 2$ neighborhood via a Monte arlo optimization scheme that minimizes the variance of randomly oriented digitized planar surfaces

An m-cube (short for Marching Cube) is the cube bounded by the centers of eight voxels of a $2 \times 2 \times 2$ neighborhood. Each corner of the m-cube corresponds to a voxel center. A m-cube can be seen as the dual of the vertex that is shared by its eight surrounding voxels. Correspondingly, each voxel is shared by its eight surrounding m-cubes. In a binary image, the voxel is shared by its eight surrounding mecubes. In possible configurations of the eight voxels is $2^{8}=256$. Because of symmetry, the 256 configurations can be grouped into 14 m -cubes cases each assigned a different weight for SA calculation (Fig. 2).

Weighted surface area estimators such as proposed by Lindblad (2005) commonly yield higher relative errors for planar surfaces than simple surface-voxel-face count (SVFC) methods.

Principal Curvature and Curvature Index
We propose a combination method that utilizes the Lindblad (2005) approach for curved regions and the SVFC method for planar regions and apply a curvature index to discern voxels with either planar or curved neighborhoods.
The two principal curvatures (k_{1}, k_{2}) at a point on a surface are the eigenvalues of the shape operator at that point and provide a measure of the surface bends. Gaussian curvature ($\mathrm{K}=\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$) is defined as the product of the principal curvatures and mean curvature ($\mathrm{S}=\left[k_{1}+k_{2}\right] / 2$) as their mean value.
We can compute K and S from the intrinsic equation of a surface object (Thirion and Gourdon, 1993):
$\mathrm{s}=\frac{1}{2 h^{3 / 2}}\left[f_{x}^{2}\left(f_{y y}+f_{z z}\right)-2 f_{y} f_{z} f_{y z}+f_{y}^{2}\left(f_{x x}+f_{z z}\right)-2 f_{x} f_{z} f_{x z}+f_{z}^{2}\left(f_{x x}+f_{y y}\right)-2 f_{x} f_{y} f_{x y}\right]$
$\mathrm{K}=\frac{1}{h^{2}}\left[\begin{array}{c}f_{x}^{2}\left(f_{y y} f_{z z}-f_{y z}^{2}\right)+2 f_{y} f_{z}\left(f_{x z} f_{x y}-f_{x x} f_{y z}\right) \\ +f_{y}^{2}\left(f_{x x} f_{z z}-f_{x z}^{2}\right)+2 f_{x} f_{z}\left(f_{y z} f_{x y}-f_{y y} f_{x z}\right) \\ +f_{z}^{2}\left(f_{x x} f_{y y}-f_{x y}^{2}\right)+2 f_{x} f_{y}\left(f_{x z} f_{y z}-f_{z z} f_{x y}\right)\end{array}\right]$
$\Delta=S^{2}-K$
$k_{1}=S+\sqrt{\Delta}$
$k_{2}=S-\sqrt{\Delta}$
Curvature Index $(C l)$ is defined as the magnitude of the vector formed by the principal curvatures in a ($\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$) parameter plane (Koenderink and van Doorn, 1992):
$C I=\sqrt{\frac{k_{2}^{2}+k_{1}^{2}}{2}}$

Preliminary Results - New Combination Method Based on the definition of the Curvature Index (CI), for a voxel in a planar neighborhood $C l=0$ and for a voxel in a curved region $C \mid \neq 0$.
The proposed new combination method computes $C l$ for every surface voxel and applies the weights proposed by Lindblad for voxels with $\mathrm{C} \mid \neq 0$ and the entire voxel surface that is part of the interface for voxels with $C l=0$.
For a preliminary proof of concept we chose four basic geometries for which the surface areas can be calculated analytically and compare the original Lindblad (2005) approach, the simple surface-voxel-face count (SVFC) method, and the proposed new combination method based on the relative error ε that is computed as:
$\varepsilon=\frac{\text { Estimated SA }- \text { Analytical SA }}{\text { Analytical SA }}$
To illustrate how the CT scan resolution potentially affects the SA estimates, ε is computed and plotted for various spatial object resolutions.

Preliminary Results - Continued

Figure 4: Comparison of the original Lindblad (2005) approach, the simple surface-voxel-face count (SVFC) method, and the proposed new combination method for various geometries. Surface
area as a function of resolution (a); relative error as a function of resolution (b); and curvature area as a function of resolution (a); relative error
indices for objects at different resolutions ($($, , $)$.

Conclusions and Future Work

- The proposed new combination method improves surface area estimates for objects with extended flat regions.
However, the Lindblad (2005) approach still performs better for objects with extended curved surfaces. This leads to the conclusion that the curvature index should be determined for a larger region around a surface voxel rather than for each individual voxel.
- A potential approach to improve the proposed combination method is to apply the partial derivative of the $C /$ to discern if a surface voxel belongs to apply the partial derivative of the Cl to discern if a su
a flat or curved region. This is part of ongoing efforts.

References

