Nested Association Mapping of Water Use Efficiency in Spring Wheat
(Triticum aestivum L.) Using Carbon Isotope Discrimination Analysis and

Remote Sensing Traits
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/.:» Water shortage Is the most significant factor Iimiting_ wheat production \ /.:. Spring wheat accessions with higher water-use efficiency and lower p
In the world. Therefore, the development of productive, drought tolerant carbon isotope discrimination values will have higher yields under
cultivars is a pressing need. Wheat cultivars with higher water use efficiency water-limited environments.

(WUE) have been shown to be less susceptible to yield losses under

water limited conditions?. ¢ Significant novel genomic regions associated with WUE (4A), plant water
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« CID(A) = Ratio of 13C /2C in plant tissue — i | - |

_ 0 water status (wi) and vyield (yld) were
relative to atmosphere = 0 % [ il a 24| | identified on chromosomes 1A, 1B, 3A,
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reflection of radiation of the various wavelengths is altered by

any condition that influences the normal growth of plants (e.g.

drought, cold, pests, etc.). This study used remote sensing to CO N CI Uus | on

guantify the canopy reflectance of the NAM panel in order to

estimate: Water Index (WI), Normalized Water Index (NWI), /% No significant correlation was found between WUE and yield across all families. )

and Normalized Difference Vegetative Index (NDVI). / *» Significant positive and negative correlations for CID and yield were found In

specific families.

 Over 20 QTL for WUE, yield and plant water status were Iidentified on
chromosomes 1A, 1B, 3A, 3B, 3D, 4A, 4B, 5B, 6B, 7A and 7D.

¢ Ten pleiotropic QTL regions for WUE, plant water status and yield were identified

\_. on chromosomes 1A, 1B, 3A, 3D, 4A, 4B, 6B, and 7D. 4




