

Project Layout

- and Read, 2008).
- and Schmidt, 2006).
- 2012).

Michelle Mausolf mausolf@ualberta.ca

@MichelleMausolf michellemausolf.wordpress.com

Charcoal Stimulates Ectomycorrhizal Fungal Association with Pine M. Mausolf, M.D. MacKenzie, and M. Flannigan

Justine Karst, Arlene Oatway, Sebastian Dietrich, Jonathon Cale, @WesternPartners and the PERELab at the University of Alberta

Preliminary Results

Figure 1. Black Carbon quantification by HPLC suggests that there is more black carbon in the mineral soil B layer compared to the A layer and similar levels of black carbon in soils after wildfire and prescribed fire.

Microbial Community Level Physiological Profiling

Summary

This fire ecology project investigates how soil communities recover from fire, and compares Black Carbon deposition in soil after wildfire to prescribed fire. An understanding of below-ground strategies for seedling success is an important tool for reclamation of disturbed sites to resilient ecosystems.

References

Preston, C. M., & Schmidt, M. W. I. (2006). Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. *Biogeosciences, 3*(4), 397-420.

Robertson, S. J., Rutherford, P. M., Lopez-Gutierrez, J. C., & Massicotte, H. B. (2012). Biochar enhances seedling growth and alters root symbioses and properties of subboreal forest soils. *Canadian Journal of Soil Science*, 92(2), 329-340. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Cambridge, UK: Academic Press.

