FOREST AND GRASSLAND COVER TYPES REDUCE HETEROTROPHIC BUT INCREASE AUTOTROPHIC RESIRATION FROM AGRICULTURAL SOILS

Mark Baah-Acheamfour¹, Scott X. Chang¹, Cameron N. Carlyle², Edward W. Bork²

¹Dept. of Renewable Resources, ²Dept. of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton

MOTIVATION

ALBERTA

Introduction

- Integrating trees and shrubs into crop and livestock production systems (agroforestry, AF) has potential for mitigating increases in atmospheric CO₂ concentrations
- The need to understand the impact of land management on net ecosystem carbon balance, the components of soil respiration:
- -Autotrophic (Ra, root) and heterotrophic (Rh, microbial) respirations. The Rh causes soil carbon to be lost and contributes to global warming
- While Ra and Rh can each account for about 50% of total soil respiration, this ratio varies widely among ecosystems

Objectives

To examine the impact of three agroforestry systems (hedgerow, shelterbelt, silvopasture) and their component land cover type (forest and herbland areas without trees) on Ra and Rh ratio

MATERIALS & METHODS

Study area

Study sites were distributed across a 270 km long soil/climate gradient of increasing moisture availability from south to north in Alberta, Canada

Experimental design and sampling

- 36 sites: 12 each of hedgerow, shelterbelt (white spruce dominated) and silvopasture (aspen dominated) sites
- In each site, plots were set up in the forested area and in the herbland areas (both grazed pasture and annual crop)
- Environmental parameters and Ra and Rh (using a modified root exclusion method) were determined over two growing seasons in 2013 and 2014

RESULTS

agroforestry and date of sampling, and b) and d): effect of land cover type

CONCLUSIONS

< 0.01

Prob > F

 Over the two growing seasons, mean Rh across all treatments was 54% of the total respiration

<0.01

- Within agroforestry systems, Rh accounted for more of the total respiration in herbland (59%) than in forest land cover type (41%)
 - more soil C was being mineralized and released to the atmosphere in the herbland
- Maintaining perennial vegetation cover reduces microbial CO₂ emissions from agricultural soils

ACKNOWLEDGEMENTS: Agriculture and Agri-Food Canada (the AGGP program) funded this research. We thank S. Banerjee, Q.T. Chen, F. Fatemi, S.S. Lim, and S.J. Ren for help and the participating landowners for site access