

Introduction

• Premature senescence of cotton caused by K deficiency was initially reported in Alabama (Abaye, 1996), and then was reported in other countries, such as Australia (Wright, 1998) and China (Zheng and Dai, 2000).

antioxidant mechanism contains two important • The antioxidant protection systems (protecting enzyme system and ascorbate (ASC) – glutathione cycle) to avoid the deleterious effect of ROS (Djanaguiraman et al., 2009).

• Low-K-tolerant and low-K-sensitive cotton cultivars were screened in pot and field experiments according to yield, fiber quality and K⁺ assimilation (Zhang et al., 2007; Yang et al., 2014). The cultivars with different K sensitivities had different K efficiencies.

Hypothesis

K deficiency will accelerate senescence of cotton, and shorten the functional stage of cotton leaf by damaging the antioxidant mechanism (ASC–glutathione cycle).

Objectives

- Explore the influences of K deficiency on cotton ageing process, such as flowering period.
- Investigate the effects of K deficiency on aging process of cotton leaf, the contents of H_2O_2 and malondialdehyde (MDA).
- Investigate the changes in the ASC-glutathione cycle in cotton leaf under K deficiency.

Materials & Methods

Experiment design

- Conducted at the Pailou experimental station of Nanjing Agricultural University, located at Nanjing, China (118°50'E, 32°02'N)
- Planted late April 2012 and 2013
- Furrow irrigated
- Treatment
 - Two cultivars
 - Simian 3, low-K tolerant
 - Siza 3, low-K sensitive
 - Two K treatment
 - 0 kg K₂O ha⁻¹
 - 150 kg K₂O ha⁻¹
 - Randomized complete block design with three replications
- Sampling
 - Subtending leaves at the first fruiting position on the 7–8th sympodial fruiting branches.
 - 31 days after anthesis.
 - At 9:00–10:00 A.M.
 - 4-5 leaves.

Discussion

Figure 1:

• White bloom numbers per unit area were higher in the 0 kg K₂O ha⁻¹ treatment before 90 or so days after planting, then became lower.

Figure 2:

• K deficiency could accelerate the chlorophyll degradation estimated by SPAD meter.

Figure 3 and Figure 4 :

• H₂O₂ content was obviously increased under K deficiency, resulting in an increase in MDA concentration. • For Siza 3, Increased amplitudes of H_2O_2 and MDA contents were bigger under K deficiency.

Figure 5:

• Lower H₂O₂ content and lower MDA content indicated less eroxidative damage in the 150 kg K_2O ha⁻¹ treatment, because ASC reduced H_2O_2 attack. Thus, lower ASC content was found under K application.

Figure 6:

• Ascorbate peroxidase activity was lower in the 0 kg K₂O ha⁻¹ treatment than 150 kg K₂O ha⁻¹ treatment, suggesting that the reaction between ASC and H_2O_2 was restricted.

Figure 7:

• Glutathione reductase activity was little changed in Simian 3, but was markedly reduced in Siza 3 in the 0 kg K₂O ha⁻¹ treatment, indicating that the reduction reaction of GSSG to GSH under K deficiency was restricted in Siza 3.

Conclusions

The effects of K deficiency on cotton :

- Early season flowering rate
- Early chlorophyll degradation
- Higher H_2O_2 and MDA contents
- Higher ASC content
- Lower ascorbate peroxidase activity
- Lower glutathione reductase activity The differences between the two cultivars in
- response to K deficiency:
- For Siza 3, Increased amplitudes of H₂O₂ and MDA contents were bigger under K deficiency.
- Siza 3 than Simian 3 to low-K

Literature Cited

- Abaye, A., 1996. Potassium Fertilization of Cotton. Virgina Cooperative Extension. Virgina State University, pp. 1-8.
- Djanaguiraman, M., Annie Sheeba, J., Durga Devi, D., Bangarusamy, U., 2009. Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J. Agron. Crop Sci. 195, 213-224. Wright, P., 1998. Research into early senescence syndrome in cotton. Better CropsInt. 12, 14–16..
- Yang, J., Zhao, W., Hu, W., Wang, Y., Chen, B., Zhou, Z., 2014. Indicator of cotton (Gossypium hirsutum L.) cultivar screening for low-potassium tolerance in seeding stage and its relationship with yield and quality. Cotton Sci. 26,301-309.
- Zhang, Z., Tian, X., Duan, L., Wang, B., He, Z., Li, Z., 2007. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J. Plant Nutr. 30, 659-670.
- Zheng, Y., Dai, J., 2000. Symptom of premature senescence in cotton and control measures. China Cottons 27, 40–41.