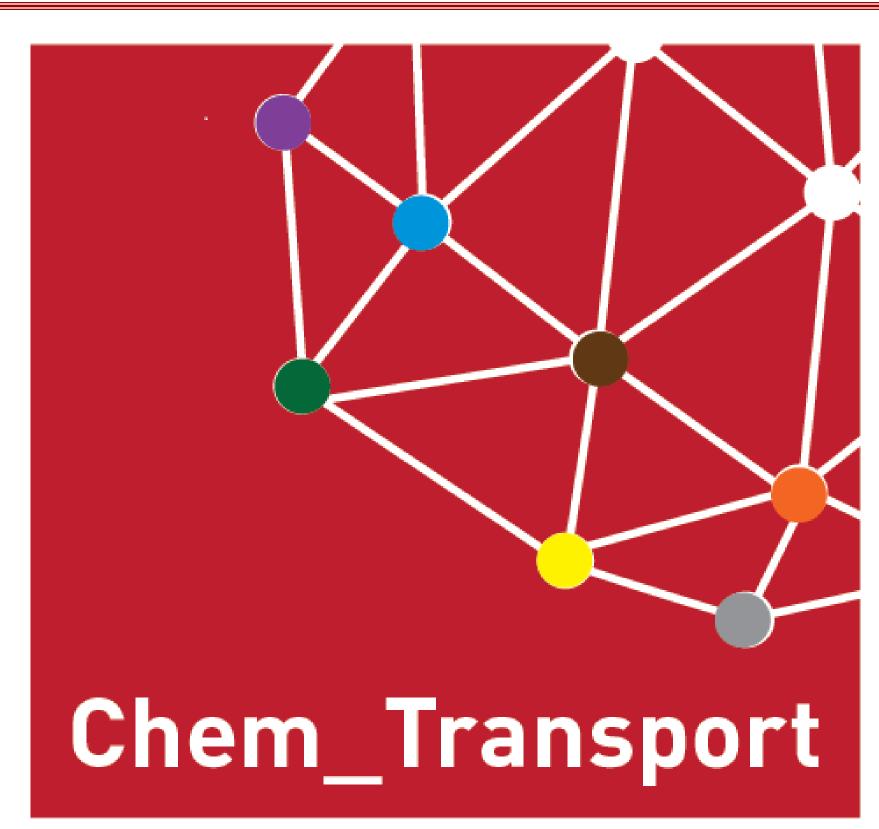


Chem_Transport


htpp://www.spess.lsu.edu/chem_transport

Software Models for Chemical Kinetic Retention and Transport in Soils

Magdi Selim (mselim@agcenter.lsu.edu)

School of Plant, Environmental and Soil Sciences

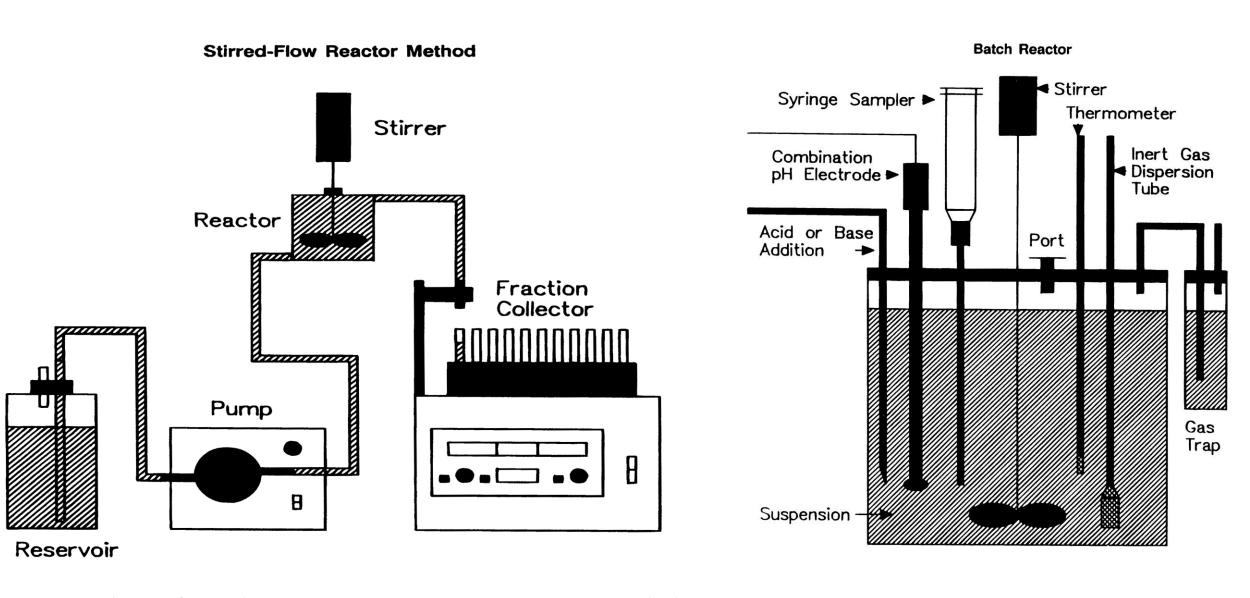
Background

Chem_Transport is a software package of several models that describe the transport and sorption of chemicals in soils and other porous media. These models are characterized by two main features; they are nonlinear and kinetic in nature. The models are broad in nature and address various physical and chemical processes that influence the behavior of solutes in porous media.

Chem_Transport models are applicable for variety of chemicals in field settings as well as controlled laboratory and greenhouse environments. The models represent transport conditions and batch type reactors under noflow conditions. Two types of models are presented; simulation type models where the user provides all physical and chemical parameters. This class of models is most suitable for classroom teaching and risk assessment. The second class of models is that where the user provides an experimentally measured data set and a selected model will provide best-fit description of measured results.

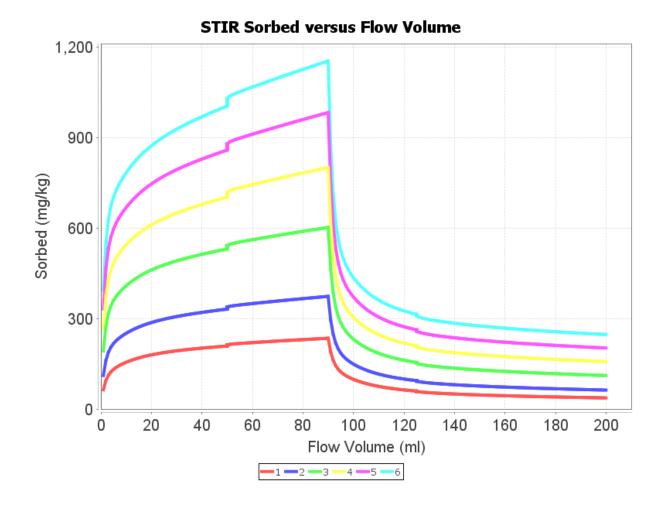
Users

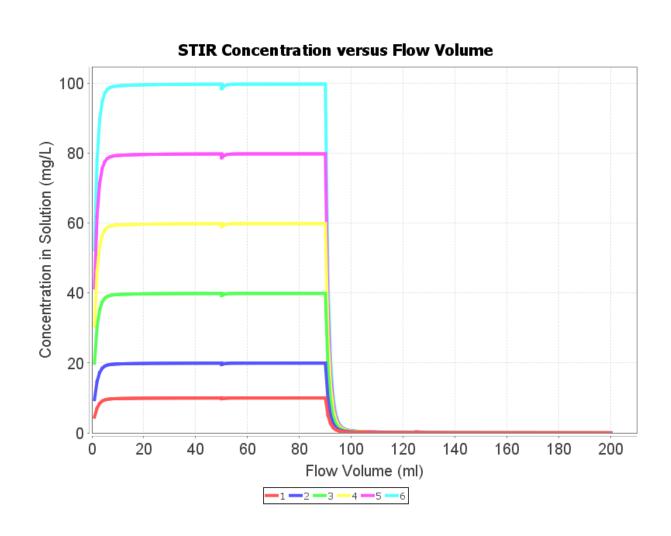
Teaching - Can be incorporated in classroom teaching for undergraduate and graduate students in chemical and civil engineering, hydrology, geology, soil physics and chemistry, environmental sciences and environmental engineering.


Simulations based on various scenarios provide information on system parameters (sensitivity analysis) and risk assessment.

Research - This software should be useful to environmental scientists, engineers, and geologists whose desire is to describe laboratory or field observations under various constraints such as batch reactors, miscible displacements, and transport in saturated and unsaturated soils. It should also be useful for federal and state agencies, researchers, consulting engineers, and decision makers in the management and restoration of contaminated sites.

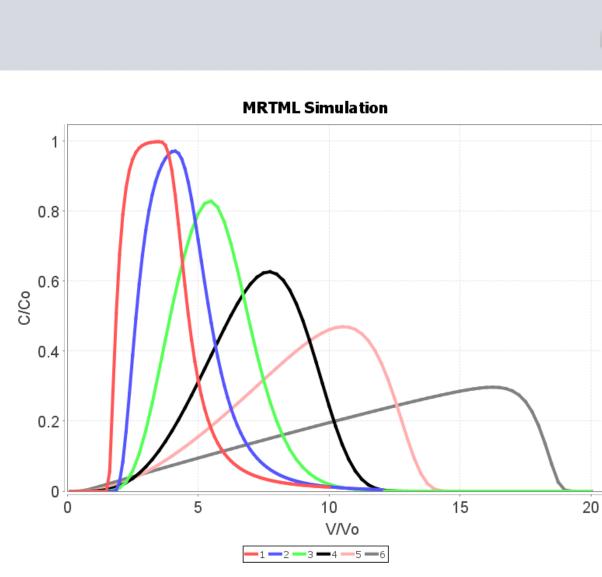
List of Models

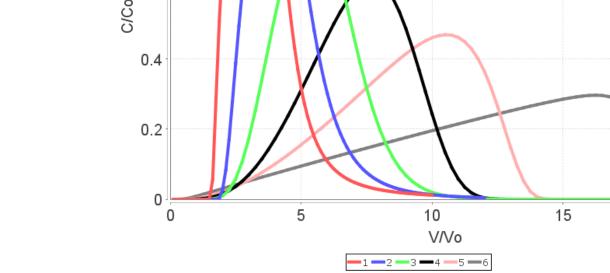

BATCH KINETIC TRANSPORT Simulations Models: Simulations Models: Nonlinear Kinetic (NKM) Multireaction and Transport Model (MRTML) Langmuir Kinetic (LKM) Second Order Two-Site (SOTSL) Multireaction Model (MRM) SOTS Mobile-Immobile (SOMIM) Second Order Two-Site (SOTS) Competitive-MRTM (CMRM) MRTM Mobile Immobile (MRTM MIM) Stir-Flow with MRM (STIRFLOW-MRM) Thin-Disk Flow with MRM (THINDISK-MRM) Ion-Exchange Transport Model (ION-EXCH) Model for Mixed Media (MRTM-MIXED) Competitive-MRM Tracer Transport (TRACER) Fitting Models: Fitting Models: Multireaction Model (MRTM-FIT) Multireaction Model (MRM-FIT) Second Order Two-Site (SO-FIT) Second Order Two-Site (SOT-FIT) Second Order Mobile-Immobile (SOMIM-FIT) Competitive MRM (CMRM-FIT) Multireaction-Immobile Model (MRTM-MIM-FIT) Competitive-Multireaction (CMRTM-FIT)

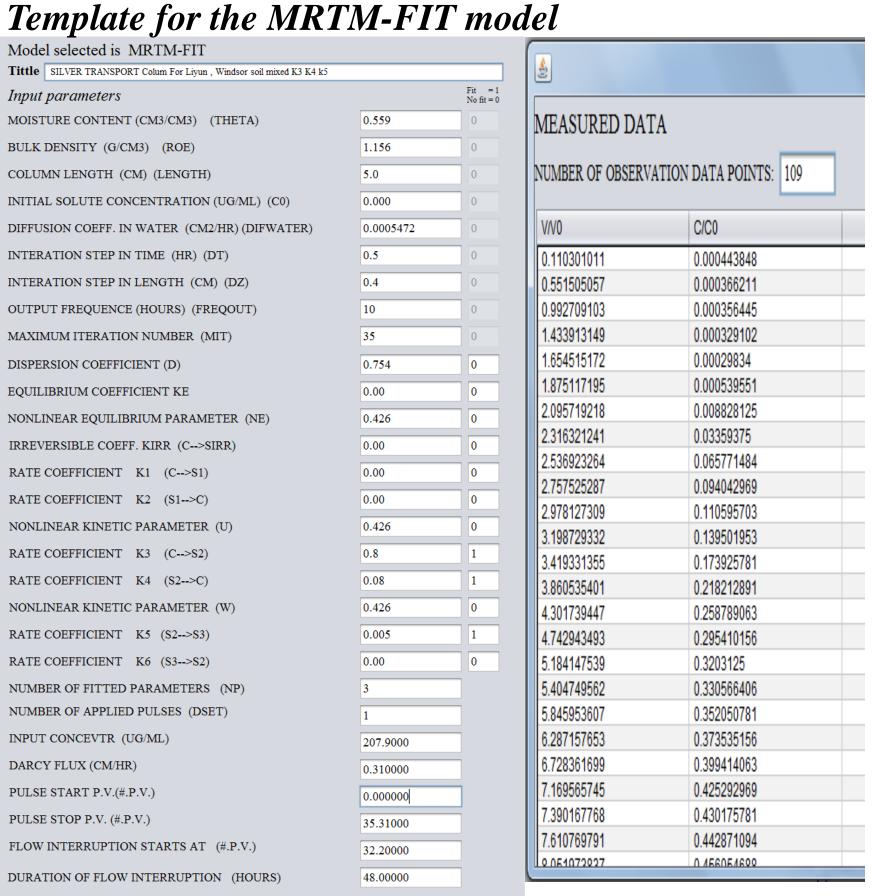

Batch Kinetic

Template for the STIRFLOW-MRM model

Tittle STIR FLOW USING MRM - TEST CASE - SENSITIVITY ANAL	YSIS		
NUMBER OF ISOTHERMS DESIRED	4	NUMBER OF CASES	
Input parameters	Case 1	Case 2	Case 3 ADD CAS
MOISTURE CONTENT,CM3/CM3 (TH)	20.000E00	20.000E00	20.000E00
BULK DENSITY, G/CM3 (ROU)	1.000E00	1.000E00	1.000E00
OLUME OF VESSEL (ML) (vOLUME)	30	30	30
LOW RATE (ML/HR) (QFLOW)	1	1	1
NITIAL CONCENTRATION,MG/L (C0)	0.000E0	0.000E0	0.000E0
PPLIED CONCENTRATION,MG/L (CS)	10.000E00	20.000E00	40.000E00
ISTRIBUTION COEFFICIENT, KD CM3/G (KD)	20.000E00	20.000E00	20.000E00
ONLINEAR FREUNDLICH PARAMETER(N) (NEQ)	0.7500E00	0.7500E00	0.7500E00
ORWARD RATE REACTION, K1,min-1 (K1)	0.1	0.1	0.1
ORWARD RATE REACTION, K2,min-1 (K2)	0.1	0.1	0.1
ONLINEAR KINETIC PARAMETER , U, (U)	0.500E00	0.500E00	0.500E00
ORWARD RATE REACTION, K3,min-1 (K3)	0.010E00	0.010E00	0.010E00
SACKWARD RATE REACTION, K4,min-1 (K4)	0.01E00	0.01E00	0.01E00
IONLINEAR KINETIC PARAMETER , U, (U)	0.5000E00	0.5000E00	0.5000E00
ORWARD RATE REACTION, K5,min-1 (K5)	0.0	0	0
SACKWARD RATE REACTION, K6,min-1 (K6)	0.000E00	0.000E00	0.000E00
RREVERSIBLE REACTION RATE,KS,min-1 (KS)	0.0010E00	0.0010E00	0.0010E00
URATION OF INPUT PULSE APPLIACTION (TP)	100	100	100
CONCENT OF LEACHING SOLITION,MG/L (CSL)	0.0	0.0	0.0
OTAL SIMULATION TIME, minutes (TTOTAL)	200.0E00	200.0E00	200.0E00
RINTOUT TIME DESIRED, minutes (TPRINT)	1.00E00	1.00E00	1.00E00
UMBER OF STOP FLOW OR INTERRUPTIONS (NSF)	2	2	2
TARTING TIME FOR STOP FLOW # 1 (MIN)	50	50	50
OURATION OF STOP FLOW # 1 (MIN)	10	10	10
TARTING TIME FOR STOP FLOW # 2 (MIN)	125	125	125
OURATION OF STOP FLOW # 2 (MIN)	10	10	10

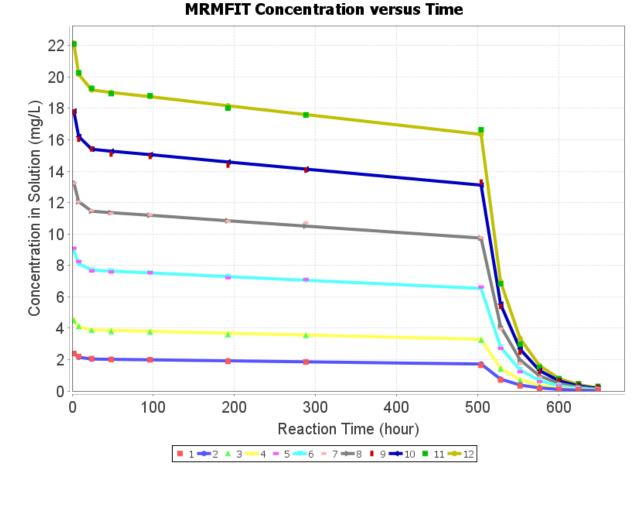


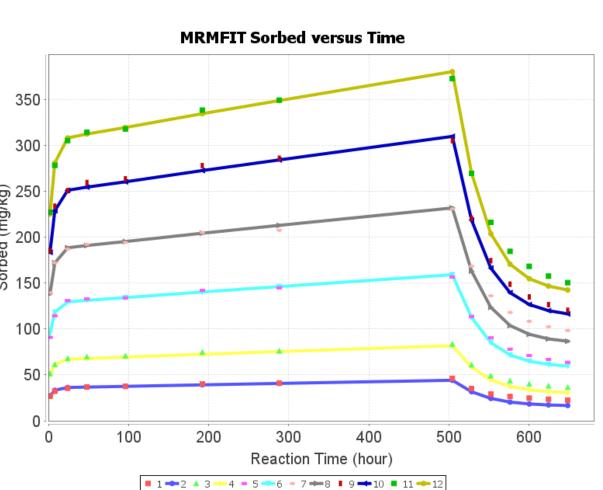

OK


Transport

Template for the MRTML model

Titule MULTIREACTION TRANSPORT MODEL - SENSITIVITY ANAL	YSIS	NUMBER OF CASES	6
Input parameters	Case 1	Case 2	Case 3
WATER FLUX, CM/DAY (WFLX)	1.0000	1.0000	1.0000
NITIAL CONCENTRATION,MG/ML (CI)	0.0	0.0	0.0
SOLUTE CONCE. IN INPUTPULSE, MG/ML (CS)	10.0	10.0	10.0
DURATION OF INPUT PULSE, DAYS (TPULSE)	12.0000	12.0000	12.0000
TOTAL SIMULATION TIME, DAYS (TTOTAL)	40.0000	48.0000	80.0000
PRINTOUT TIME DESIRED, DAYS (TPRINT)	0.5000	0.5000	1.0000
NITIAL TIME STEP, DT, DAYS (DT)	0.2000	0.2000	0.2000
INITIAL INCREM. DISTANCE, DX, CM (DX)	1.0000	1.0000	1.0000
NUMBER OF SOIL LAYER IN PROFILE (NX)	001	001	001
NUMBER OF ITERATIONS DESIRED (IT)	1	1	1
INPUT DATA FOR LAYER 1			
THICKNESS (CM) OF LAYER 1, (COL)	10	10	10
SOIL MOISTURE CONTENT OF LAYER 1, (TH)	0.4000	0.4000	0.4000
SOIL BULK DENSITY OF LAYER 1, (ROU)	1.2500	1.2500	1.2500
DISPERSION COEFF. OF LAYER 1, CM2/DAY (D)	1.000	1.000	1.000
DISTRIBUTION COEFF. FOR EQ., CM3/G, (KD)	1.00	1.00	1.00
NOLINEAR EQ. PARAM., N, LAYER 1 (NEQ)	0.5000	0.75000	1.0000
FORWARD REACTION RATE, K1, DAY-1, L-1 (K1)	0.0000	0.0000	0.0000
BACKWARD REACTION RATE, K2, DAY-1, L-1 (K2)	0.000	0.000	0.000
NONLINEAR KINETIC PARA, W, LAYER 1 (W)	0.000	0.000	0.000
FORWARD REACTION RATE, K3, DAY-1, L-1 (K3)	0.000	0.000	0.000
BACKWARD REACTION RATE, K4, DAY-1, L-1(K4)	0.0000	0.0000	0.0000
NONLINEAR KINETIC PARA, U, LAYER 1 (U)	0.000	0.000	0.000
IRREVERSIBLE RATE COEFFICIENT, DAY-1, 1(KS)	0.000	0.000	0.000
FORWARD REACTION RATE, K5, DAY-1, L-1 (K5)	0.0000	0.0000	0.0000
BACKWARD REACTION RATE, K6, DAY-1, L-1(K6)	0.000	0.000	0,000




■ 1 **─**2

Tittle DA	TA FROM ATRAZIN	E-SUGARCEN RESI	DUE-ADSOR-DESOR	,JEQ (2005) 34:32:	5-335,Figs 5&6
Input po	arameters				Fit No fit
INITIAL (CONCENTRATIO	ON,MG/L (CI)		0.0000E00	0
INCREMI	ENTAL TIME ST	EP,HOUR (D	T)	0.1000E00	0
PRINTOU	JT TIME INTER	T)	2.0000E00	0	
MAXIMUM NUMBER OF ITERATIONS (MIT)				40	0
DISTRIB.	COEFF. FOR E	QL. SORP,CM3	/G (KF)	0.8000E00	1
NONLINEAR PARAM.FOR EQUL. MECH. (NF)			H. (NF)	0.9477E00	0
IRREVERSIBLE REACTION RATE, KS, HR-1 (KIRR)			R-1 (KIRR)	0.0000E00	0
FORWARD RATE REACTION, K1,HR-1 (K1)				0.0000E00	0
BACKWARD RATE REACTION, K2,HR-1 (K2)				0.0000E00	0
NONLINEAR KINETIC PARAMETER , W, (NS1)			V, (NS1)	0.0000E00	0
FORWARD RATE REACTION, K3,HR-1 (K3)			(K3)	0.3500E00	1
BACKWA	RD RATE REAC	CTION, K4,HR-	1 (K4)	0.1100E00	1
NONLINI	EAR KINETIC PA	ARAMETER, U	J, (NS2)	0.9477E00	0
FORWAR	D RATE REACT	TION, K5,HR-1	(K5)	0.00022E00	1
BACKWA	ARD RATE REAC	CTION, K6,HR-	1 (K6)	0.000E00	0
NUMBER	OF FITTED PA	RAMETERS (1	NP)	4	
					NEXT
MEASUREI	D DATA			В	ACK
NUMBER OF D			NUMBER OF OBSER		
ime (hr)	Soil weight (g)	Total water (g)	Decanted water (g)	Input C (ppm)	Final C (ppm)
.00	1.079	29.591	0.500	3.370	2.391
3.00	1.079	29.091	0.500	3.370	2.188
4.00	1.079	28.591	0.500	3.370	2.067
.00	1.079	28.091	0.500	3.370	2.007

NUMBER OF DATA SET: 6 NUMBER OF OBSERVATIONS IN EACH SET: 14					
Time (hr)	Soil weight (g)	Total water (g)	Decanted water (g)	Input C (ppm)	Final C (ppm)
2.00	1.079	29.591	0.500	3.370	2.391
8.00	1.079	29.091	0.500	3.370	2.188
24.00	1.079	28.591	0.500	3.370	2.067
48.00	1.079	28.091	0.500	3.370	2.012
96.00	1.079	27.591	0.500	3.370	1.984
192.00	1.079	27.091	0.500	3.370	1.884
288.00	1.079	26.591	0.500	3.370	1.848
504.00	1.079	26.091	17.183	3.370	1.632
528.00	1.079	38.127	28.525	3.370	0.695
552.00	1.079	39.467	31.032	3.370	0.332
576.00	1.079	38.421	29.550	3.370	0.149
600.00	1.079	38.697	30.583	3.370	0.084
624.00	1.079	37.907	30.045	3.370	0.052
648.00	1.079	37.734	30.453	3.370	0.037
2.00	1.079	29.617	0.500	6.360	4.475
8.00	1.079	29.117	0.500	6.360	4.111
24.00	1.079	28.617	0.500	6.360	3.859
48.00	1.079	28.117	0.500	6.360	3.788
96.00	1.079	27.617	0.500	6.360	3.751
192.00	1.079	27.117	0.500	6.360	3.591
288.00	1.079	26.617	0.500	6.360	3.536
504.00	1.079	26.117	16.978	6.360	3.236
528.00	1.079	38.356	29.545	6.360	1.403
552 00	1 079	38 636	30 177	6.360	0.653

MEASURED DATA

NUMBER OF OBSERVATION DATA POINTS: 4

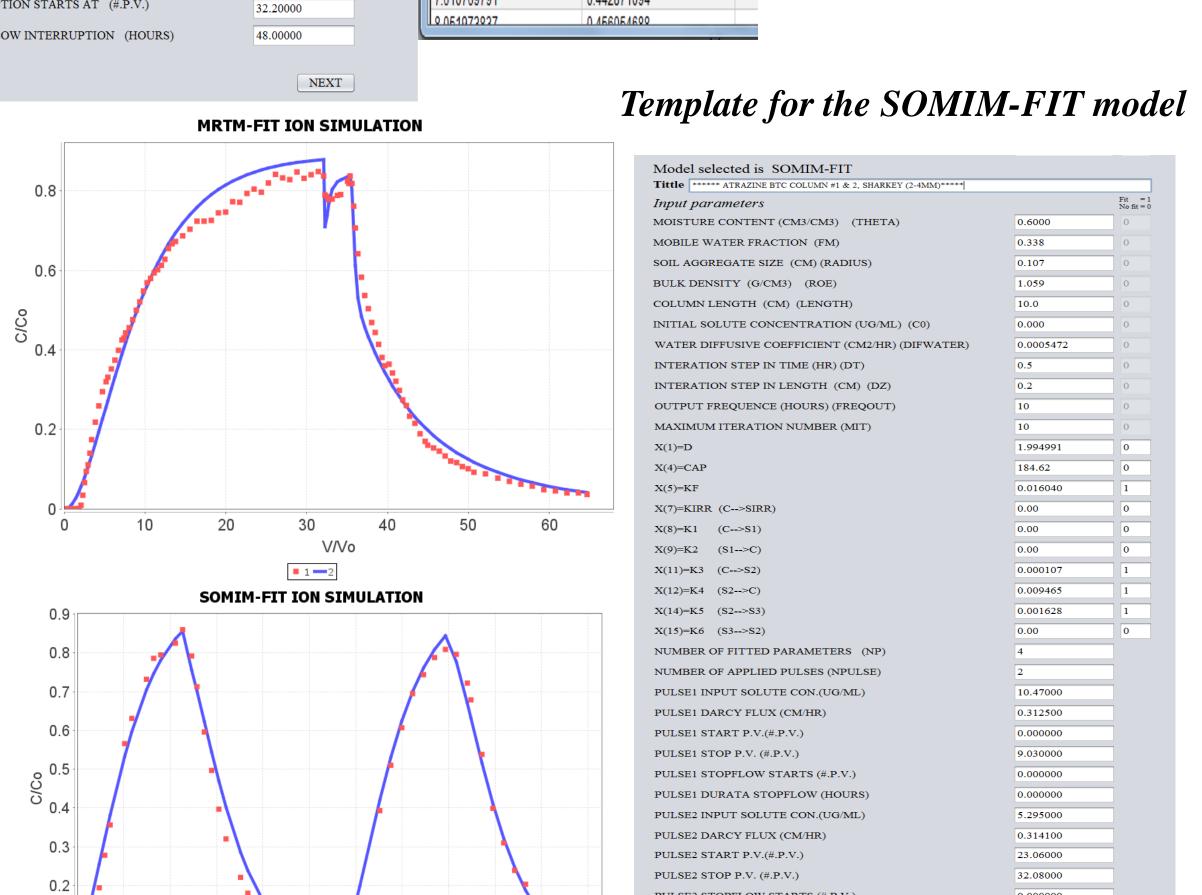
C/C0

0.083

0.194

0.278

0.356


0.631

0.825

0.397

0.129

0.000000

