

Soil Effects on Nutrient Leaching when Part of Engineered Plant Growth Media, Sally Logsdon, USDA-ARS-NLAE

Engineered soil mix components

Sand
 • low water holding capacity
 • low cation exchange capacity
 • low nutrient levels
 • low nutrient sorption capacity

Sorbents
 • industrial by-products
 • cost commercial products
 • harm to plants
 • cement soil

organic material
 • good water holding capacity
 • high nutrient load
 • may result in leaching

Soil
 • high water holding capacity
 • high cation exchange capacity
 • lower nutrient than compost

The goal of this study was to determine if soils differed in their ability to reduce leaching of phosphorus or nitrate when part of engineered plant growth media.

Materials and Methods

Soils

Storden: Fine-loamy, mixed, superactive, mesic Typic Eutradept

Sac: Fine-silty, mixed, superactive, mesic Oxyagric Hapludoll

Killduff: Fine-silty, mixed, superactive, mesic Dystric Eutradept

Harps: Fine-loamy, mixed, superactive, mesic Typic Calciaquoll

Table 1. Properties of soils used in the study. Nutrient levels mg/kg. M3 is Mehlich-3.

Soil	Fe-dpta	P _{M3}	Al _{M3}	Fe _{M3}	Ca _{M3}	pH
Storden	11	1.9	65.1	6.9	367	6.9
Sac	44	2.7	92.8	13.6	425	6.4
Killduff	71	13.6	64.5	29.6	368	6.9
Harps	32	4.6	9.1	15.1	1185	7.3
Soil	OC	IC	NO ₃	NH ₄	Sand	Clay
	g/100g				g/g	g/g
Storden	1.28	0.25	11.9	2.6	0.51	0.20
Sac	1.95		34.6	9.0	0.03	0.37
Killduff	2.38		16.7	4.5	0.02	0.40
Harps	2.77	1.89	20.0	4.4	0.29	0.35

Table 2. Properties of soils mixes averaged across those with and without compost blankets.

Soil mix	Fe-dpta	P _{M3}	100*P _{M3} /(Al _{M3} +Fe _{M3})	100*P _{M3} /Ca _{M3}
	mg/kg	mg/kg		
Storden	22c	1.2b	4.9b	0.33b
Sac	26b	1.1b	4.4b	0.34b
Killduff	29a	2.2a	9.0a	0.64a
Harps	25bc	1.3b	7.4a	0.31b
Soil mix	OC	TN	NO ₃	NH ₄
	g/100g	g/100g	mg/kg	mg/kg
Storden	0.76a	0.06a	14a	0.72c
Sac	0.77a	0.06a	13a	1.26a
Killduff	0.81a	0.06a	12a	0.81b
Harps	0.84a	0.07a	11a	0.81b

Table 3. Properties of soils mixes with or without compost blankets averaged across soils.

Compost blanket	Fe-dpta	P _{M3}	100*P _{M3} /(Al _{M3} +Fe _{M3})	100*P _{M3} /Ca _{M3}
	mg/kg	mg/kg		
No	25b	1.1b	5.1b	0.33b
Yes	27a	1.7a	7.7a	0.48a
Compost blanket	OC	TN	NO ₃	NH ₄
	g/100g	g/100g	mg/kg	mg/kg
No	0.67b	0.06b	2.9b	0.87a
Yes	0.92a	0.07a	21.8a	0.92a

Soil mixes by volume:

- no compost: 20% soil 80% sand
- with compost: 15% soil, 80% sand, 5% compost blanket

Disk infiltrometers

- ponded and -3 cm head
- before and after growing plants
- time to initial drainage
- saved first container of effluent: "saturated"
- saved last container of effluent: "unsaturated"

Plants grown 2 months

- Buffalo grass: *Buchloe dactyloides* (Nutt.) Engelm.
- Blue grama grass: *Bouteloua gracilis* H.B.K.
- Red clover: *Trifolium pratense* L.
- above ground dry matter and root depth

Results and Discussion

Table 4. Nitrate in saturated and unsaturated effluent of soil mixes across compost treatments, before planting and after harvest. Also calculated total nitrate load in preplant and post-harvest effluent, based on outflow volumes for saturated and unsaturated effluent.

Soil mix	Pre NO ₃ sat	Pre NO ₃ unsat	Pre NO ₃ load
	mg/L	mg/L	mg
Storden	15b	26a	28a
Sac	68a	36a	55a
Killduff	46ab	17a	42a
Harps	64ab	41a	65a

Soil mix	Post NO ₃ sat	Post NO ₃ unsat	Post NO ₃ load
	mg/L	mg/L	mg
Storden	221ab	70a	253ab
Sac	263a	79a	270a
Killduff	159bc	63a	190ab
Harps	114c	75a	128b

Table 4. Total P in saturated and unsaturated effluent of soil mixes across compost treatments, before planting and after harvest. Also calculated total phosphorus load in preplant and post-harvest effluent, based on outflow volumes for saturated and unsaturated effluent.

Soil mix	Pre plant TPsat	Pre plant TPUnsat	Pre plant P load
	mg/L	mg/L	mg
Storden	0.24a	0.71a	0.64a
Sac	0.09a	0.40b	0.23b
Killduff	0.10a	0.09c	0.13b
Harps	0.10a	0.10c	0.12b

Soil mix	Post harvest TPsat	Post harvest TPUnsat	Post harvest P load
	mg/L	mg/L	mg
Storden	0.08b	0.05b	0.11b
Sac	0.09b	0.07b	0.11b
Killduff	0.41a	0.37a	0.58a
Harps	0.07b	0.07b	0.09b

Other significant results preplant:

- Pre-plant columns with compost blanket significantly slower unsaturated infiltration (12 vs. 47 cm/h)
- Columns with compost blanket significantly longer time to drain (95 vs. 52 min)

Conclusions

- High post harvest nitrate in effluent: mineralization + nitrogen-fixation
- High nutrient compost blanket not increase nitrate leaching pre-plant
- Compost blanket significantly lower nitrate leaching post-harvest (59 v 86 mg/L)
- All soils sorbed P, especially those high in Al or carbonates
- Soils not harmful as sorbents might be (Logsdon and Sauer, 2016)