Can we reduce N losses and increase spring wheat grain yields with Urease and Nitrification Inhibitors? Resham Thapa¹, and Amitava Chatterjee²

Introduction

Urease and nitrification inhibitors have the potential to reduce nitrogen (N) losses and increase crop productivity from urea-fertilized soils. In a recent meta-analysis, Thapa et al., (2016) found:

- Nitrification inhibitors (NI) can reduce N₂O emissions by 38% and increase crop yields by 7% as compared to conventional N fertilizers.
- Double inhibitors (combined application of both urease and nitrification inhibitors: DI) can reduce N_2O emissions by 30% as compared to conventional N fertilizers.
- DI might provide added benefits over NI in alkaline soils, coarse-textured soils, and irrigated systems.

Objectives: To assess the impact of NI and DI, as well as N application rate on N losses (NH₃ volatilization and N₂O emissions) and spring wheat grain yields under rainfed conditions.

Experimental Approach

- **Research site:** Glyndon, MN (46° 54' 45'' N, 96° 36' 35'' W), Previous crop: Soybean.
- Soil type: Bearden silt clay loam (a fine-silty, mixed, superactive, frigid Aeric Calciaquolls). • Basic soil properties:
- Soil pH, 8.1-8.4; Cation exchange capacity (CEC), 26-27 cmol₍₊₎ kg⁻¹ soil; Organic matter, 4.5-4.7%, Clay, 32.5-33%, Silt, 58-59%, Bulk density, 1.28-1.30 Mg m⁻³, Soil NO₃-N_(0-60 cm), 45-49 kg N ha⁻¹. **Experimental design:** Randomized Complete Block Design (RCBD) with 4 replicates.

	•		
Table 1 Nitrogen source and nitrogen rate	S. No.	Treatments	2014
treatments during 2014, 2015 and 2016 growing seasons under rainfed spring wheat production systems. In 2014, only 7 spring fertilizer treatments (^x) were applied. The N	1	Control	x
	2	U@100% Fall (146 kg N/ha)	-
	3	DI@ 100% Fall (146 kg N/ha)	-
	4	U@ 75% Fall:25% Spring (146 kg N/ha)	-
	5	DI@ 75% Fall:25% Spring (146 kg N/ha)	-
treatments were control (no N addition) and	6	U@ 50% Fall:50% Spring (146 kg N/ha)	-
three N sources: urea (U), urea with urease	7	DI@ 50% Fall:50% Spring (146 kg N/ha)	-
inhibitor NBPT and nitrification inhibitor DCD	8	U@ 100% Spring (146 kg N/ha)	х
(DI), and urea with nitrification inhibitor	9	U@ 100% Spring (168 kg N/ha)	x
nitrapyrin alone (NI). Values in parenthesis	10	NI@ 100% Spring (146 kg N/ha)	x
represents the total N applied (both fall and	11	NI@ 100% Spring (168 kg N/ha)	x
spring application).	12	DI@ 100% Spring (146 kg N/ha)	x
	13	DI@ 100% Spring (168 kg N/ha)	х

- Ammonia (NH₃) volatilization and nitrous oxide (N₂O) emissions were measured during 2014 and 2015 only. Open chamber ammonia traps were used to measure NH₃ volatilization (Jantalia et. al., 2012). The NH₃ volatilized from soil were trapped in polyfoam strips soaked in 0.5 M H₃PO₄ solution, extracted with 250 ml of 2 M KCl, and then analyzed in Timberline TL2800 ammonia analyzer. Cumulative NH₃ volatilization were determined by summing the NH₃ loss between sampling days.
- Nitrous oxide (N₂O) fluxes were measured using static chamber methods (Parkin and Venterea, 2010). Three headspace gas samples at 0, 30 and 60 mins after chamber deployment were obtained. Samples were analyzed for N₂O concentrations using a DGA-42 Dani Master gas chromatograph fitted with ⁶³Ni electron capture detector. The N_2O fluxes was determined using linear or quadratic regression. Cumulative N_2O emissions were determined by trapezoidal integration of N_2O fluxes over time.
- At Physiological maturity, wheat harvested using small plot combine harvester, grains were dried at 60°C for 3 days and adjusted to 14% moisture level before recording grain yield.

• Statistical analysis: Single df linear contrasts for cumulative NH₃ and N₂O emissions in SAS 9.3.

at p<0.05.

Nelson, and Jacob Aberle for their assistance in maintaining field plots and taking measurements.

¹University of Maryland, College park, MD ²North Dakota State University, Fargo, ND

Figure 2. Temporal variations in (a) rainfall, (b) mean ammonia (NH₃) volatilization loss during the sampling period, and (c) mean nitrous oxide (N_2O) fluxes for all N treatments during 2014 and 2015 growing season in a rainfed spring wheat production system. The N treatments were control (no N addition) and three N sources: urea (U), urea with urease inhibitor NBPT and nitrification inhibitor DCD (DI), and urea with nitrification inhibitor nitrapyrin alone (NI), each applied at the rate of 146 and 168 kg N ha⁻¹. Asterisk sign indicates the significant differences among treatments at the 0.05 level. Downward pointing arrows indicate the date of fertilizer application (F), planting (P), and harvesting (H). "ns" not significant.

- 2015 growing season is relatively wetter and cooler as compared to 2014 growing season.
- In both years, the peak NH₃ and N₂O fluxes occurred during the initial 30-40 days following fertilization.

Effect on Cumulative NH₃ **volatilization:**

- DI significantly reduced cumulative NH₃ loss by 26 to 34% as compared to urea (U) alone across both years
- NI, however, have similar NH_3 loss to that of urea (U) alone. Moreover, NI significantly increased NH₃ loss by 48% as compared to DI in 2015 (Figure top left).
- Increasing N application rate from 146 to 168 kg N/ha also significantly increased NH₃ loss by 24 to 29% (Figure bottom left).

Effect on Cumulative N₂O emissions:

- DI significantly reduced cumulative N₂O emissions by 43 to 50% as compared to urea (U) alone (Figure top
- NI also significantly reduced cumulative N₂O emissions by 53% as compared to urea (U) alone in 2015 (Figure top right).
- N application rate showed no effect on cumulative N_2O emissions (Figure bottom right).

