

Influence of No-Till Practice on Soil Carbon Pools

A. Chatterjee

Department of Soil Science, North Dakota State University, Fargo, ND 58108-6050

Objectives

1. Comparing changes in basic soil properties in between conventional (CT) and no-till (NT) practices 2. Differences in SOC under CT and NT at different soil depths of profile 3. Shift in surface SOC pools (active and resistant) under long-term CT and NT

Methods

Figure 1. (a) geographic location of study sites, (b) Conventional tillage (left) and no-tillage (right) paired fields at site 2, Sargent County, ND.

- Three soil profile samples (90 cm) and bulk soil samples (0-10 cm) were collected from paired growers' field (Fig. 2) under long-term (>20 yr) chisel plough and no-till practices in southeast ND (Fig. 3).
- Bulk density (BD) of soil depth increments 0-15, 15-30, 30-60, and 60-90 were determined by dividing the ovendry soil weight with soil core volume.
- Soil samples of each depth increment were processed-air-dried and 2 mm sieved and analyzed for soil organic carbon (SOC) and total nitrogen (N) using automated total CN analyzer
- For 86 days, soil samples of 0-15 cm depth were incubated in quart jars at 50% water holding capacity at 25°C and soil CO₂ efflux was measured using gas chromatograph (Dani-Master GC, Dani Inc., Italy).
- Using three pool constrained model (Paul et al., SOC pool was separated into (1) active(C_a), (2) slow (C_s) and (3) nonhydrolyzable or C_r pools (determined by digestion with 6M HCl, fractions).

C mineralization rate = $C_a * k_a e^{(-ka*days)} + (C_{soc} - C_r - C_a) * k_s e^{(-ks*days)} + C_r * k_r * e^{(-kr*day)}$

Soil organic C pool sizes (Ca, Cs and Cr) and turnover rates (ka and ks) were determined by the three pool constrained model using SAS PROC NLIN (ver. 9.4, SAS, 2013) separately for each jar. The Cs pool was calculated by subtracting Cr and Ca pools from Csoc. One-way ANOVA was conducted for each site using randomized complete block design with three replications. Treatment means were separated using Fisher's LSD test at 95% significance level. Statistical analysis was performed using PROC ANOVA (SAS 9.4, 2013). Results

Table 1. Site and soil information of three paired fields of NT and CT

Figure 2. Changes in soil BD (Mg m⁻³), SOC (Mg ha⁻¹), and C:N ration within 0-90 cm soil depth

Table 3. Changes in cumulative, C_a , C_s , and C_r pools their relative percent contributions to SOC, and mean residence time (MRT) of Ca (days) and Cs (years) within 0-15 soil depths in response to NT and CT

Site	Coordinates	No-till	Tile	Soil Series	Tillage	Crop rotation	Sand	Silt	Clay	Textural Class	Site Treatments		Cumulative		<u>%</u> C₂	Ca-MRT	C _s	%C _s	C _s -MRT	C _r	%C _r
		for									_		ug g-1	$\frac{1}{\text{mg g}^{-1}}$	a .	days		3	Years	mg g ⁻¹	I
								g kg ⁻¹			1	СТ	224	0.11	0.40	4.41	17.1	59.6	33.9	12.0	40.0
1	45°58'10.4''N,	20 yr	Yes	Colvin-Borup	CT	Corn-Soybean	274	451	275	Clay loam		NT	323	0.19	0.68	3.23	19.2	70.8	25.0	8.27	28.5
	97°33'0.47"W			Complex	NT	Winter cereal-corn-	407	394	200	Loam	LSD) (P=0.05)	594	0.23	0.51	10.8	4.09	41.8	99.0	17.8	41.8
						soybean-flax/sunflowe	er				2	CT	247	0.13	0.48	5.52	15.7	59.7	25.7 ^A	10.5 ^B	39.8
												NT	309	0.11	0.35	1.53	17.1	52.6	15.3 ^B	15.2 ^A	47.0
2	45°59'54.6" N	36 yr	No	Aastad-Forman	CT	Corn-Soybean	278	447	275	Clay loam	LSD) (P=0.05)	261	0.26	0.92	6.47	2.66	10.2	9.67	3.78	9.84
	97°28'43.8'' W										3	CT	185	0.15 ^A	0.44^{A}	8.63 ^A	18.8	54.6	99.0 ^A	15.4	44.9
					NT	Winter cereal-corn-	242	446	313	Clay loam		NT	167	0.08^{B}	0.25 ^B	3.44^{B}	15.3	46.4	32.5 ^B	17.6	53.4
-					~	soybean-flax/sunflowe	er	• • •			LSD) (P=0.05)	22.8	0.03	0.07	3.20	6.63	15.4	31.3	3.98	15.4
3	45°59'11.4" N 97°26'35.5" W	20 yr.	Yes	Overly Bearden	CT	Corn-Soybean	382	369	250	Loam						Conclu	ision				
NT Winter cereal-corn- 292 433 275 Clay loam soybean-flax/sunflower									$ \begin{bmatrix} 250 \\ -9 \\ 200 \\ -130 \\ + 10 \\ -150 \\ -160 \\ -159 \\ + 158 \\ + 160 \\ + 159 \\ + 150$					 Significant differences in SOC and its pools were limited within the surface 0-15 cm depth only. 							
																• One o SOC a	ut three s and C:N 1	ites sno	ler NT tha	n CT. Hoy	reases in wever.
Site	Treatments	pH(1:2	2.5)	EC	Inorga	nic N Olsen-P	<u> </u>				\mathbf{O} 100 -	3 100 -				profile SOC did not differ between NT and CT					
				dSm ⁻¹	kg h	$\frac{kg ha^{-1}}{\mu g g^{-1}} \qquad $					<u>e</u> 50 -										
1	CT	7.83 ().06 ^{A*}	$0.77 0.03^{A}$	28.4	18.1 ^A 10.3 1.53	A	267	55.9	9 ^A	Joff					• Tillage	e had infl	uence o	on distribut	tions of bi	lochemi
	NT	7.57 ().06 ^A	$0.39 0.08^{B}$	23.0	7.45 ^A 11.3 2.52	A	232	34.0	6 ^A		T NT	CT NT	СТ	NT	SOC f	ractions	derived	from lab i	ncubation	study b
	LSD (P=0.05)	0.29		0.27	31.9	8.96		138						Site 3		the eff	fect was r	not cons	istent acro	ss sites.	
2	CT	7.77 ().06 ^A	$0.79 0.05^{A}$	17.07	11.3 ^A 41.3 13.5	A A	343	36.0	0^{A}		Site I	Site 2 Site 3			• For th	ese sites.	either n	o-till had	no influer	nce on
	NT	6.63 ().78 ^A	0.34 0.11 ^B	14.14	2.66 ^A 45.7 21.9	A	375	33.0	0 ^A					SOC	or other f	actors li	ke soil tex	ture and c	ron	
	LSD (P=0.05)	2.07		0.25	17.4	63.4		101			Figure 3	Soil Prof	ile C (Mo ł	1a ⁻¹) of 9	0 cm	rotatic	n had sic	nificant	t interactic	ns with ti	llage an
3	CT	8.00 ().01 ^A	0.46 0.09 ^A	16.04	4.56 ^A 29.3 7.64	A	269	35.9	9 ^A	denth un	der CT a	nd NT nrac	rtices			n nau siz	, tha dif	forance		mage an
	NT	7.53 ().15 ^B	0.54 0.18 ^A	13.30	4.02 ^A 33.0 14.9	A	313	43.	1 ^A	ucpui un					SUCI	U Makeu			I SUC.	
	LSD (P=0.05)	0.38		0.69	12.4	54.5	-	77.0													

