Bayesian data-worth analysis for unsaturated soil hydraulic parameter estimation

Jun Man¹, Lingzao Zeng¹, Laosheng Wu²

¹ College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China ² Department of Environmental Sciences, University of California, Riverside, CA 92521, USA

cm h⁻³

 K^{-1})

2.1742

5.1835

- each other. Thus reliable estimation of soil hydraulic and thermal parameters is essential for predicting water movement in unsaturated soil.

$$\lambda_{ij}(\theta) = \lambda_T C_w |q| \delta_{ij} + (\lambda_L - \lambda_T) C_w \frac{q_i q_j}{|q|} + \lambda_0(\theta) \delta_{ij}$$
$$\lambda_0(\theta) = b_1 + b_2 \theta + b_3 \theta^{0.5}$$

Methods

Bayesian inference

The posterior distribution of model parameters **m** can be obtained by assimilating the measurements **d** according to Bayes' theorem

$$p(\mathbf{m} | \mathbf{d}) = \frac{p(\mathbf{m}) p(\mathbf{d} | \mathbf{m})}{p(\mathbf{d})} \propto p(\mathbf{m}) L(\mathbf{m} | \mathbf{d})$$

In this study, we resorted to sampling the posterior distribution by MCMC.

Information metric

(95% confidence intervals).

The results shown in Figures (2, 3) were obtained by assimilating water content and temperature measurements with error levels of $\sigma_{W} = 0.01$ cm³ cm⁻³, $\sigma_{T} = 1.0$ °C.

Table 2. Data-worth measurements with five r	values of diffe measurement er	erent types of ror levels.	Ta di	able 3. Data-v fferent obso	worth values of ervation loca	^r measurement tions with	s sampled from typical in-site
Standard deviations of measurement error (W: cm ³ cm ⁻³ ; T: °C)	W	Т	m	easurement e Observed location	error levels of σ _\ W	_v = 0.03 cm ³ cr T	n ⁻³ , σ _T = 1.0 °C. WT
$\sigma_{\rm W} = 0.01, \sigma_{\rm T} = 0.2$	6.180(0.010)	10.051(0.005)		01	1.308(0.005)	3.454(0.008)	3.802(0.005)
$\sigma_{\rm W} = 0.02, \sigma_{\rm T} = 0.4$	4.328(0.008)	8.711(0.010)		02	2.135(0.008)	3.938(0.007)	4.499(0.005)
				O3	2.594(0.004)	3.121(0.006)	4.104(0.005)
$\sigma_{\rm W}$ = 0.03, $\sigma_{\rm T}$ = 0.6	3.441(0.010)	7.414(0.008)		0102	2.603(0.006)	5.010(0.013)	5.605(0.009)
$\sigma_{\rm W} = 0.04, \sigma_{\rm T} = 0.8$ $\sigma_{\rm W} = 0.05, \sigma_{\rm T} = 1.0$	2.902(0.007) 2.541(0.007)	6.436(0.013) 5.718(0.008)		0103	3.024(0.004)	4.716(0.010)	5.655(0.009)
				0203	3.093(0.007)	4.834(0.007)	5.801(0.008)
				010203	3.441(0.010)	5.718(0.008)	6.594(0.010)

The expected utility rooted in relative entropy is used to quantify the information content of measurements

Note that the actual measurements are unavailable in the computational process. Thus the expected utility value is calculated by averaging on all possible measurement realizations.

Note: W: water content; T: temperature; WT: water content + temperature.

Conclusions

\checkmark The information content of the measurement decreased as the measurement error level increased;

With the typical in-situ measurement error level, the temperature data were more informative than the water content measurements, and jointly assimilating these two types of measurements provided non-redundant

information.

parameters.