Nitrogen Management for Carbon Credit Neville Millar and G. Philip Robertson, W.K. Kellogg Biological Station and Department of Plant, Soil and Microbial Sciences, Michigan State University

Why we care about nitrous oxide

Nitrogen fertilizer application to corn on the **KBS LTER Resource Gradient Experiment**

KBS LTER Resource Gradient Experiment: testing how crops respond to various levels of nitrogen fertilize

Measuring nitrous oxide emissions

Manual chamber technology used to sample for N_2O gas from soil surface. N_2O concentrations analyzed using gas chromatography. N₂O flux calculated from concentration change over time.

Michigan, USA 42.41-43.45 N; 83.64-85.37W Location Maize - soybean Rotation RCBD (4 replicates) Design: Plots: 15.2 × 5 m 0, 45, 90, 135, 180, 225 kg ha N rates ine loam

- Nitrous oxide (N₂O) is a potent greenhouse gas (GHG) with a Global Warming Potential (GWP) \sim 300 × CO₂
- Nitrous oxide is the most important precursor of atmospheric gases that deplete stratospheric ozone
- About two thirds of global anthropogenic N_2O emissions and more than three quarters of total U.S.A. N_2O emissions are from agriculture, predominantly from cropping systems with external N inputs to the soil
- Nitrogen fertilizer rate is a very good predictor of nitrous oxide emissions

Benefits of lowering nitrous oxide emissions

• Nitrogen (N) will be used more efficiently by the crop • Fertilizer costs can be lowered without a yield loss • Agriculture's global warming impact will be reduced • Other N losses (e.g., nitrate leaching) can be reduced

Nitrous oxide response curves

Carbon markets provide financial incentives to lower N rate

0.4 0.0 0 40 80 120 160 200 240 N fertilizer rate (kg ha ⁻¹)	0.0 50 100 150 200 250 300 N fertilizer rate (kg ha ⁻¹)
 How to manage for lower N rate 4R stewardship improves NUE Should translate to lower N rate for same yield Precision N application Variable rate lessens fertilizer need Precision estimation of N need MRTN better predicts average Real-time process modeling 	Co-benefits Reducing N fertilizer rate can: • Lower loss of other reactive N species • Provide financial savings to the farmer • Generate offsets for the marketplace
Barriers to farmer participation	Some potential next steps
 Institutional Lack of policy (direction) Low Carbon offset price (no incentive) Agricultural Record keeping (availability and access) Technology (availability and access) 	 Combine complementary policies with an emissions trading program Test cropland N management protocols in compliance markets Allow projects to stack offset credits Credit multiple offset types separately

IPCC (1% EF)

Shcherbak et al. (2014)

-0.

0.8

.....

ha⁻¹)

N₂O-N

The incentive to reduce N fertilizer rate is increased as baseline N fertilizer rate increases

Project based

Cost (validation and verification)

Multiple protocols (uncertainty)

Personal

Management legacy (inertia) • Risk (averse)

Acknowledgements: Kevin Kahmark, Iurii Shcherbak, Abisai Urrea, Ivan Ortiz-Monasterio

