

Unmanned Aerial Vehicles for Nitrogen Management of Corn (Zea mays L.): A Framework for Predicting Spatial and Temporal Variability of N Requirement. Jacob Nederend¹, Dr. Bill Deen¹, Dr. Hugh Earl¹, Dr. Aaron Berg² ¹Department of Plant Agriculture, University of Guelph Food Agriculture Communities ²Department of Geography, University of Guelph Environment Results MERN at N:corn price ratio of 6 was equal to 190 kg N ha⁻¹, producing 12160 kg ha⁻¹ grain yield (Fig. 1) Rate of N required to reach plateau yield of 12227 kg ha⁻¹ was 212 kg N ha⁻¹ GreenSeeker NDVI was more closely related to Δ yield than any UAV-derived VI at all development stages except V6 (Fig. 2) NDVI was a better predictor of Δ yield than all other UAV-derived VIs (Fig. 2) SAVI was most related to Δ yield at V6 (R²=0.31679) but was a poor predictor at later stages (data not shown) V6 Y = 7267.04x-2816.58 $R^2 = 0.11826$ 4000 3000 2000 10000 V89000 Y = 25061.27x-19826.22 $R^2 = 0.55630^*$ 5000 3000 V10 9000 Y = 27585.29x-22238.49 - 8000 R²= 0.55799* 7000 6000 5000 4000 3000 2000 GreenSeeker NDV points represent individual observations. * denotes significance at $P \le 0.05$. 14000 $Y = 6191.56 + 56.2089x - 0.1300x^2$ 190, 12160 -12000 _ 10000 8000 6000 4000 2000 Nitrogen Rate (kg ha-1) Figure 1. Quadratic plateau model depicting N response function for six N rates. The most economic rate of N was 190 kg N ha⁻¹ based upon a N:corn price ratio of 6. Fertilization rate at plateau yield was 211 kg N ha⁻¹.

CHANGING LIVES **IMPROVING LIFE**

Introduction

Corn nitrogen (N) demand varies temporally and spatially across a field, making successful prediction of fertilizer rate a challenge. Annual variability of the most economic rate of N (MERN) is related to seasonal precipitation, thus complicating estimation of in-season fertilizer rates [1]. Vegetative indices (VIs) calculated from spectral reflectance of corn canopies acquired using ground sensors have successfully predicted corn N response, however, they are constrained by limited sensitivity to N status until the V8 leaf stage, low spatial resolution, and time consuming data acquisition[2]. Unmanned aerial vehicles (UAVs) mounted with multispectral sensors can rapidly acquire reflectance measures at high spatial resolution, however, the sensitivity of these sensors to N status and ability to predict N requirement is unknown. The objective this study was to determine the sensitivity of four UAV-derived VIs to N status and response on a delta yield $(\Delta yield)$ basis.

Materials and Methods

Site description and treatments

- Long-term N trial in continuous corn (2008-2016): Elora Research Station, ON, Canada
- Well drained London silt loam
- Randomized split-block
- Main plot: two application timings of pre-plant and sidedress Split plot: N rate
- Pre-plant N response treatments selected for UAV observation 0, 28, 57, 115, 188, and 230 kg ha⁻¹

Observations

- UAV surveys at V6, V8, V10 with SenseFly eBee fixed-wing UAV
- 2 Filter-modified consumer digital cameras (Canon S110, Canon, Ohta-ku, Japan) on separate flights
 - Approximately 2.3cm/pixel ground sampling distance
- Camera centre wavebands (nm): 1) 625, 560, 850; 2) 715, 505, 455 • Ground-based measurements
- Trimble GreenSeeker (Trimble Inc., Sunnyvale, CA), grain yield

Image Processing and Data Analysis

- Images from separate flights aligned and orthomosaics generated in Pix4dmapper v2.2.25 (Pix4D, Lausanne, Switzerland)
 - Digital numbers converted to reflectance using built-in radiometric calibration tool and ground-based images of 99% reflective Spectralon panel (ASD Inc., Boulder, CO)
 - VIs (Table 1.) calculated using raster calculator
- Plot-level VI means extracted using ArcGIS 10.3 (ESRI, Redlands, CA) - Transformed to relative values using 230 kg ha⁻¹ as non-limiting reference
- Data analyzed using SAS v9.4 (SAS Institute, Cary, NC)
- N response determined using PROC NLIN
- VI linear regressions conducted using PROC GLM
- $\alpha = 0.05$ for all analyses

Table 1. Vegetative indices and associated reflectance (R) calculations determined in post-processing

Vegetative Index	Formula
Normalized Difference Vegetative Index (NDVI)	$(R_{NIR}-R_{red})/(R_{NIR}+R_{red})$
Green Chlorophyll Index (CI)	(R _{NIR} /R _{Green})-1
Soil Adjusted Vegetation Index (SAVI)	$(R_{NIR}-R_{red})(1+L)/(R_{NIR}+R_{red}+L)$
Enhanced Vegetative Index (EVI)	$2.5(R_{NIR}-R_{red})/(R_{NIR}+6R_{red}7.5R_{Blue})$

Figure 2. GreenSeeker NDVI (left), UAV-derived NDVI (centre), and UAV-derived CI (right) versus delta yield at three leaf stages for corn with six different rates of N. Orange

Acknowledgements

Thank you to the Ontario Ministry of Agriculture, Food, and Rural Affairs: HQP Program, and the International Plant Nutrition Institute for funding this research.

References

[1] Deen, W., Janovicek, K., Lauzon, J., and Bruulsema, T. 2015. Optimal rates for corn nitrogen depend more on weather than price. Better Crops. 99:16-18. [2] Pfeffer, A., Stewart, G., Janovicek, K., and Deen, W. 2010. Evaluation of canopy reflectance technology using a delta yield approach. Agron. J. 105:1453-1461.