

Lakesh Sharma¹, Sukhwinder Kaur Bali², Ahmed A Zaeen³ and James D. Dwyer², (1)Cooperative Extension, University of Maine Cooperative Extension Service, Presque Isle, ME(2)Cooperative Extension, University of Maine, Presque Isle, ME (3)University of Maine, Presque Isle, ME

Introduction:

After the green revolution that followed World War 2, the use of chemical fertilizers increased to increase yields but at the expense of the environment. The common usage of P fertilizers has led to P pollution in the waterways of the United States of America due to lack of preventative measures to prevent the erosion of P in bodies of water. As a result, wildlife and the environment are at risk. Studies carried out by the Environmental Protection Agency (EPA) has reported and confirmed the presence of P pollution in the Northeastern United States of America.

Fig. 1. The trend of average phosphorus (kg.ha-1) used under potato in the key potato-growing states. The polynomial regression analysis was utilized to a potential relationship between years and phoasphorus use. Source: USDA, National Agricultural Statistics Service, and New England Ag Statistics.

Methodology:

Nutrient analysis data from UMaine Soil Testing Laboratory (UMSTL) was used. Loam, gravelly loam, sandy loam, and silty loam with a parent material of glacial outwash are the soils present in Aroostook County, Maine. Table 1.

Table 1: Before planting at the site, a compret conducted. Soil samples were collected from 0-15cm deep from the study using a standard soil probe.

Location/ Soil Sample Depth	OM	pH	OM	рН	Р	K	Ca	Mg	N	S	B	Cu	Fe
	%		ppm										
Easton/0–15 cm	3.4	5.4	18	386	1065	125	26	133	0.5	1.25	4.9	5.4	1.0
Easton/15–46 cm	3.1	5.5	20	459	1065	114	18	167	0.4	1.19	4.6	6.1	1.0

Potential Reasons of Increased New England States Phosphorus Pollution: A Review

hensive	soil	test	was
m deep	and	15-46	cm

Results:

Fig. 2: The aluminum and soil phosphorous levels in Aroostook County, Maine. The University of Maine Soil Testing Laboratory has been receiving soil samples since 2006. Figure 2 (a) represents the change in phosphorous levels with time (p=0.03), figure 2 (b) represents the relationship between Al and P (p=0.01), figure 2 (c) accounts for the change in aluminum levels with time (p=0.2), figure 2 (d) represents the relationship between Ca and pH (p=0.02), figure 2 (e) represents the relationship between Ca and P(p=0.2), and figure 2 (f) represents the relationship between pH and P (p=0.6). The polynomial model was used in 2 (f) because it was best suited. The trend was positive and properly depicted the significant association of soil phosphorus buildup with successive years.

last 21 years.

American Society of