

SDSU

Effects of crop rotation and grazing in an ICLS on greenhouse gas emissions in the Northern Great Plains

Liming Lai¹, Navdeep Singh¹, Hanxiao Feng¹, Douglas Landblom², Songul Senturklu², Kris Ringwall², and Sandeep Kumar¹ ¹Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota 57007, USA; ²Dickinson Research Extension Center, Dickinson, North Dakota 58601, North Dakota State University, Fargo, North Dakota 58108, USA

INTRODUCTION

- Integrated crop-livestock system (ICLS) can reduce soil greenhouse gas (GHG) emissions that majorly includes carbon dioxide (CO_2) , Nitrous oxide (N_2O) , and Methane (CH_4) .
- Little is known about the impacts of the crop rotation and grazing on GHG fluxes in Northern Great Plains in the United States.

Table 2. Means of N_2O , CO_2 , and CH_4 fluxes under different crop rotation sequences in 2016 at Dickinson, North Dakota, USA.

Treatment	N ₂ O Fluxes	CO ₂ Fluxes	CH₄ Fluxes
	$(g ha^{-1} d^{-1})$	$(\text{kg ha}^{-1} \text{ d}^{-1})$	$(g ha^{-1} d^{-1})$
Rotation			
С	$4.75^{a^{+}}$	11.7 ^a	1.46 ^a
S 1	2.74 ^a	9.80 ^a	4.57 ^a
\$2	1 26 ^a	11 1 ^a	3 00 ^a

4.20

 $\mathbf{D} \mathbf{Z}$

RESULTS

J.UU

Table 3. Means of N_2O , CO_2 , and CH_4 fluxes under rotation sequence 2, 4, and 5, and grazing and un-grazing in 2016.

Treatments	N ₂ O Fluxes	CO ₂ Fluxes	CH ₄ Fluxes
	$(g ha^{-1} d^{-1})$	$(kg ha^{-1} d^{-1})$	$(g ha^{-1} d^{-1})$
Rotation			
S2	4.26 ^{a†}	11.1 ^a	3.00 ^a
S 4	3.43 ^a	9.07 ^a	3.49 ^a
S 5	4.16 ^a	11.7 ^a	1.21 ^a
Grazing			
G	5.73 ^a	10.4 ^a	1.88 ^a
U	2.98 ^b	12.2 ^a	1.84 ^a
	Type 3 Tests of Fixed Effects ($P > F$)		

OBJECTIVES

To evaluate the impacts of cattle grazing and different crop rotations on soil CO₂, N₂O, and CH₄ fluxes in the Northern Great Plains, USA.

MATERIALS AND METHODS

- The experiment was a randomized complete block design with 3 replications at Dickinson Research Extension Center, near Dickinson, North Dakota, USA. The treatments were described in Table 1.
- Gas samples were taken once a week from June to October 2016 at 0, 20 and 40 minutes' intervals. Samples were collected using 10-ml syringe via a chamber and transferred to a 10-

$\sim -$				
S 3	3.45 ^a	13.1 ^a	3.52 ^a	
S 4	3.43 ^a	9.07 ^a	3.49 ^a	
S 5	4.16 ^a	11.7 ^a	1.21 ^a	
	Type 3 Tes	ts of Fixed Effe	ects $(P > F)$	
Rotation	0.18	0.46	0.56	
Time	0.003	<.0001	0.06	
<i>Rotation</i> × <i>Time</i>	0.051	0.59	0.65	

[†]Means within the same column followed by different small letters are significantly different at P<0.05 for treatments.

Rotation	0.07	0.06	0.79
Grazing	0.003	0.52	0.86
Rotation × Grazing	0.36	0.62	0.68

[†]Means within the same column followed by different small letters are significantly different at P<0.05 for treatments.

- N_2O , CO_2 , and CH_4 fluxes among the rotation sequences were not significantly different (Table 2 and 3).
- Mean N₂O fluxes under the grazing was significantly higher than that for the un-grazing

ml vacuumed vial (Fig. 1).

• Gas chromatography (GC) machine was used to measure concentrations of CO_2 , CH_4 , and N₂O for each gas sample (Fig. 2).

but CO₂ and CH₄ fluxes were not significantly different between the grazing and un-grazing (Table 3 and Fig. 3).

- Time significantly impacted N₂O and CO₂ fluxes but not CH_4 fluxes (Table 2).
- Trends of N_2O and CO_2 fluxes followed the temperature trend over the observed days, but CH_4 flux trend was not (Fig. 3).

CONCLUSIONS

- Crop rotation sequence did not impact the greenhouse gas fluxes significantly.
- Grazing significantly increased N₂O fluxes.
- Time had a significant effect on N₂O and CO₂ fluxes but not on CH₄.

Fig. 1.Chambers for collecting GHG samples.

Fig. 3. Trends of N₂O, CO₂, and CH₄ fluxes under and un-grazing, and maximum and grazing minimum temperature and precipitation over time in 2016 at Dickinson, North Dakota, USA.

This work was funded by the grant from the United States Department of Agriculture – NIFA (Award No 2016-68004-24768) – "Back to the future: Enhancing food security and farm production with integrated crop-livestock system".

Email: *liming.lai@sdstate.edu*