Agriculture et Agriculture and Agri-Food Canada Agroalimentaire Canada

Isolation and characterization of *Aphanomyces euteiches* **antagonistic** bacteria from pea root and rhizosphere soil

Hossain, Z¹., Bainard, L.D.¹., and Gan, Y.^{1*}

¹ Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road East, Swift Current, SK, S9H 3X2

Background

- 4 Aphanomyces root rot caused by A. euteiches is a serious disease of pea worldwide
- 4 A major threat to pea (*Pisum sativum* L.) and lentil (*Lens culinaris* Medik.) in Canada
- This oomycete pathogen is not responsive to available control measures

 \downarrow The resting spores of the pathogen can remain active in the soil > 10 years Long-term crop rotation is the only option available to avoid this disease

Left – healthy, right – infected pea seedlings

Materials and Methods

- Samples collected from 9 locations across south Saskatchewan
- Four healthy and 4 diseased plants from each location just before flowering
- 4 The bacteria isolated on Luria Bertani , Potato Dextrose, Pseudomonas, and Tryptic Soy agar media
- **4** Bioassays on PDA plates with bacterial isolates and *A. euteiches*
- Scored for antagonism 10-days after co-incubation
- 4 in vitro antagonism study on pea plants on Murashige-Skoog medium
- 4 In greenhouse trial, approx. 45 thousands zoospores and 2-ml overnight grown bacterial culture used in each pot

Results

- About 6 thousands rhizosphere and endophytic bacteria isolated
- Selected 410 bacteria used in in vitro antagonism study Thirty five isolates selected from the replicated bioassays 4 Ten isolates tested in vitro on field pea showed antagonism 4 All 35 bacteria then tested in the greenhouse using sterile soil **4** Twenty four bacteria selected for further study

Suppression of *A. euteiches* Suppression of *A. euteiches* by bacteria on pea seedlings

Production of zoospores in oatmeal broth

Fifteen-day seedlings; left to right:

Roots of 15-day seedlings; left to right: control, pathogen, pathogen + bacteria Control, pathogen, pathogen + bacteria right - pathogen + bacteria

Mature plant; left- control,

Conclusion

Soil bacteria hold the promise of managing Aphanomyces root rot. Technologies developed from this project may provide a disease management strategy for sustainable and profitable pulse production systems in the Canadian prairies.

Acknowledgements

The authors acknowledge the assistance provided by Keith Hanson, Lee Poppy, Limin Luan, and Eric Walker, and the financial support from Agriculture and Agri-Food Canada, and the Government of Saskatchewan.

© Hossain et al. 2017