

Background

Both potassium (K) and boron (B) are vital to potato tuber yield and storage characteristics. However, applying B evenly to crops is both challenging and important because B is required in small amounts and the window between deficiency and toxicity is narrow. A new fertilizer formulation has been developed to facilitate even B application by co-granulating it with potassium chloride (KCl; Mosaic Aspire; 0-0-48K-0.5B). In a three-year field study on a Hubbard loamy sand soil, we evaluated the effectiveness of Aspire as a K and B source for Russet Burbank potatoes.

Objective

The overall objective of this study was to evaluate the effectiveness of co-granulated K and B as a nutrient source for potatoes relative to muriate of potash (MOP) with and without granular B.

Methods

- 3-year study (2017 results pending)
- Russet Burbank potatoes grown in acidic, low-organic-matter Hubbard loamy sand soil.
- Six treatments
 - 1. Check with no K or B added
 - 2. 280 kg-ha⁻¹ K as MOP at planting
 - 3. 280 kg-ha⁻¹ K and 2.8 kg-ha⁻¹ B as MOP with granulated 14.3% B (Granubor) at planting
 - 4. The same rates of K and B and as Aspire at planting
 - 5. 280 kg·ha⁻¹ K as MOP split between planting and hilling
 - 6. 280 kg·ha⁻¹ K and 2.8 kg·ha⁻¹ B as Aspire split between planting and hilling

Evaluation of Co-granulated Potassium and Boron on Potato Yield and Quality James Crants, Carl Rosen, and Matt McNearney **University of Minnesota, Department of Soil, Water, and Climate**

- Tuber size

Transformer	K and D	Application rates of K ₂ O and B (kg-ha ⁻¹)						
l reatment		Pre-planting		Emer	gence		Total applied	
π	sources	K ₂ O	В	K ₂ O	В		K ₂ O	В
1	None	0	0	0	0		0	0
2	MOP	280	0	0	0		280	0
3	MOP + B	280	2.8	0	0		280	2.8
4	Aspire	280	2.8	0	0		280	2.8
5	MOP split	140	0	140	0		280	0
6	Aspire split	140	1.4	140	1.4		280	2.8
¹ MOP: 0-0-60; Aspire: 0-0-58-0.5B; Granular B: 14.3% B								

Table 2. Initial soil characteristics in each year

(a)		
(d)	14	
ght)		
weig	12	
dry	10	
%) ر	0	
atior	8	
entra	6	
once	Л	
e K c	4	
tiol	2	
Pe	0	
		Mic
(b)		
	60	•
1)	50	E
g.ml	50	
u) (40	
atioı		
entr	30	
conc	20	
e B o	20	
etiol	10	
Pe		
	0	
		IVIIC
F	ia	ur
	-3	

Measurements

Petiole and tuber B and K

• Marketable yield (tubers above 85 g)

• Tuber quality

• Statistical significance at $\alpha = 0.05$

Table 1. Application rates of elements in fertilizer treatments.

²All treatments received recommended rates of N, P, S, Zn, Mg based on soil test

	Secondary macronutrients			trients	Primar	
	SO ₄ -S	NH₄OAc-	NH ₄ OAc-	NH₄OAc-K	Bray P	NO ₃ -N
	(ppm)	Mg (ppm)	Ca (ppm)	(ppm)	(ppm)	(ppm)
	2.0	123	555	58	17	2.33
	1.0	126	520	76	16	4.90
racteristics	Other char		ts	icronutrien	М	
O.M. LOI	Water	DTPA-Zn	DTPA-Mn	DTPA-Fe	DTPA-Cu	ot Water
(%)	рН	(ppm)	(ppm)	(ppm)	(ppm)	B (ppm)
1.1	6.1	0.72	9.50	37.7	0.323	0.125
1.0	6.1	0.43	5.61	21.7	0.317	0.090

Sample depth 60 cm for NO₃-N; all others 15 cm

3 sufficiency range ----MOP =**⊒**⇒MOP + B

Effects in model (P-values) Date: < 0.0001 reatment*date: 0.0807 Year: < 0.0001 Freatment*year: 0.2873 Date*year: < 0.0001 Treatment*date*year: 0.0804

Contrasts (P-values): None vs. MOP: < 0.0001 MOP vs. Aspire: 0.6898 Single vs. split: 0.0076

Effects in model (P-values) Treatment: < 0.0001 Date: < 0.0001 Treatment*date: 0.9981 Year: 0.0010 Treatment*year: 0.2832 Date*year: < 0.0001 Treatment*date*year: 0.7142

Contrasts (P-values): None vs. MOP: 0.4924 MOP vs. Aspire: **< 0.0001** Single vs. split: 0.3419

Late July

re 1. Petiole potassium (a) and boron (b) concentrations.

Figure 2. Tuber potassium (a) and **boron (b) concentrations**

within a year that have a letter in common are not different at $\alpha = 0.05$.

Marketable tuber yield Figure 3.

Columns within a year that have a letter in common are not different at $\alpha = 0.05$.

* Columns within a size class that have a letter in common are not different at $\alpha = 0.05$.

Tuber quality

- treatment in any year.

Results

K and B sources

2015 2016

Treatment*year: 0.0013

reatment: < 0.0001

fects in 2016 (P-values)

Treatment: < 0.0001

Control vs. MOP: < 0.0001

Aspire vs. MOP: 0.6773 plit vs. single: 0.2197

■ 2015 ■ 2016

Treatment: **0.0007**

reatment*vear: 0.3264

Control vs. MOP: 0.4140 Aspire vs. MOP: **0.0002**

Split vs. single: 0.8238

Control vs. MOP: < 0.0001 Aspire vs. MOP: 0.8584 Split vs. single: 0.0129

 Hollow heart and scab occurred in no more than 3% of the tubers in any

 Tuber specific gravity was higher in the control than single or split MOP (P=0.07).

Summary and Conclusions

- Based on petiole and tuber K concentrations (Fig. 1 & 2), the cogranulated potassium / boron formulation (Mosaic Aspire) provided K as effectively as MOP.
- Aspire also provided B as effectively as granular B.
- K fertilization increased tuber yield in both years (Fig. 3).
- In 2015, a single application of MOP produced smaller yields than split applications of MOP and single or split applications of Aspire.
- K fertilization increased tuber size relative to the zero-K control.
- When K application was not split, the addition of B as Granubor or Aspire increased tuber size compared to MOP without B.
- The treatments receiving split applications had less of their yield in tubers over 285 g than the treatment receiving a single application of Aspire.
- Overall, Aspire appears to be an effective source of K and B and to provide an efficient means of applying these nutrients.

Future Directions

In 2017, we removed the split-application treatments and added treatments evaluating other co-granulated nutrient formulations.

Acknowledgements

This research was supported in part by Mosaic, Inc.