The Role of Enhanced Efficiency Fertilizers in Fall and Spring Nitrogen Placement

Rigas Karamanos\(^1\), Stewart Brandt\(^2\), Chris Holzapfel\(^3\), Bryan Nybo\(^4\), Dick Puurveen\(^5\), Steve Shirtliffe\(^6\) and Mario Tenuta\(^7\)

\(^1\)Koch Fertilizer Canada, Calgary, AB. \(^2\)Northeast Agricultural Research Foundation, Melfort, SK. \(^3\)Indian Head Agricultural Research Foundation, Indian Head, SK. \(^4\)Westhead Conservation Area, Swift Current, SK. \(^5\)University of Alberta, Edmonton, AB. \(^6\)University of Saskatchewan, Saskatoon, SK and \(^7\)University of Manitoba, Winnipeg, MB

Background on shallow banding

- Some of the pioneer work on shallow banding was carried out by Nyborg (1986) as quoted by Harapiak et al. (1986)\(^8\).

<table>
<thead>
<tr>
<th>Method of placement</th>
<th>Yield increase (kg ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow mix</td>
<td>915</td>
</tr>
<tr>
<td>Deep mix</td>
<td>130</td>
</tr>
<tr>
<td>Shallow band</td>
<td>1130</td>
</tr>
<tr>
<td>Deep band</td>
<td>1400</td>
</tr>
</tbody>
</table>

- Work involves research by Rochette and coworkers (2009 and 2013)\(^9\).

- Also, demonstrations in Ontario and Manitoba:
 - http://www.ontariosoilcrop.org/progadvances.htm

Why the interest now?
- Fluctuating prices of nitrogen fertilizer and crops
- Efforts to reduce NH\(_3\) and N\(_2\)O emissions, and nutrient leaching and runoff
- Long periods from application to crop demand
- Susceptible to loss
- Enhanced Efficiency Fertilizers

Enhanced Efficiency Fertilizers (EEF)

Enhanced Efficiency Fertilizer describes fertilizer products with characteristics that allow increased [nutrient availability] and reduce potential of nutrient losses to the environment e.g., gaseous losses, leaching or runoff when compared to an appropriate reference product. (Tentative 2015, Association of American Plant Food Control Officials)

Types of EEF
- Uncoated slowly available fertilizers containing N, e.g., urea-aldehyde condensation products (e.g., urea-formaldehyde reaction products, IBDU), triazines, etc.
- Physical coating or barrier around soluble N fertilizer, e.g., SCU, PCU, combination products
- Stabilizers, e.g., nitrification and urease inhibitors

Key Results and Discussion

Overall statistical effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>AB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.001</td>
<td>0.064</td>
</tr>
<tr>
<td>Placement</td>
<td>0.640</td>
<td>0.000</td>
</tr>
<tr>
<td>Placement*Treat</td>
<td>0.146</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Key Results and Discussion

- **Spring treatments**
- **Fall treatments**

Field research program

- Five sites in 2014, seven in 2015 and seven in 2016
- Three products (urea, Urea + AGROTAIN® stabilizer, SUPERU® fertilizer)
- Three placements (broadcast, two depths of banding)
- Two placements in 2015 and 2016 (fall and spring)
- Two rates, recommended and 75% of recommended
- Replicated four times

Benefit of deep banding

Ammonical N from urea is retained in the soil because of a resistance in upward diffusion (Sommer et al., 2004)\(^4\).

What is new?
- Zero till urea or UAN bands in one-pass systems are seldom more than 1 1/2’- 2’ deep.
- Shallow placement of nitrogen may cause higher losses.
- The belief that if “it’s in the soil it’s safe” may be misguided.
- New research is indicating that shallow banded urea and UAN are susceptible to volatilization losses.

Introduction

There are three mechanisms of nitrogen (N) losses depicted below:

- Ammonia volatilization occurs due to hydrolysis causing a rapid rise in pH around unprotected urea granule. The high pH results in more ammonia.

- There are a number of recommended practices to reduce volatilization
 - Use of urease inhibitors (Watson, 1990)\(^1\)
 - Slow-release forms (Rao, 1987)\(^1\) and, Irrigation shortly after application (Holcomb et al., 2011)\(^1\)
 - Most common - incorporation of the fertilizer into the soil (Harapiak, et al. 1986)\(^8\).

References