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Figure 2: Example for misclassification errors of K-means clustering. Raw grayscale data (left) compared 
with K-means segmentation results (right). 

Figure 4: Comparison of actually measured porosity with porosities derived from segmented CT time series 
data for 45/50 silica sand (left). Relative porosity errors for the same time series dataset (right). 

o The development and evaluation of advanced segmentation methods for
transformation of grayscale X-ray CT data into a discrete form that allows
accurate separation of solid, liquid, and vapor phases for quantitative
description of porous media properties and for modeling of dynamic
system processes remains a grand challenge.

o To advance X-ray CT data segmentation and reduce operator bias, we
propose a new semi-automated three-dimensional multiphase algorithm
that combines K-means seeding with a Markov random field framework
(KM-MRF).

o The proposed algorithm was evaluated for two 4-D datasets (Fig. 1), each
representing a time-series of 3-D image data, and compared to simple K-
means clustering.

Figure 1: Sample cross sections of raw X-ray CT grayscale data for investigated silica sand and glass 
beads at various liquid saturation levels. 

o The MRF segmentation objective is to assign a label, representing a phase,
to each voxel with a particular gray level proportional to the X-ray
attenuation coefficient. Let 𝑋𝑋 represent the set of observed gray levels in
the 3-D X-ray CT dataset, and 𝐿𝐿 represent the set of labels of the phase to
which each voxel belongs. Applying Bayes’ theorem, we can express the
posterior probability 𝑃𝑃 𝐿𝐿/𝑋𝑋 in terms of likelihood, prior and marginal
probabilities (Kulkarni et al., 2012):

o The MRF model is inherently powerful for image segmentation because it
can generally handle any number of voxel classes (e.g., representing
different pore-filling fluids or different solid grain materials). However, it
must be initialized with reasonable statistics (i.e., mean and standard
deviation) for each voxel class.

o We applied K-means (KM) clustering to compute the statistics for each
voxel class from the original dataset. The objective of the KM algorithm is
to assign the 𝑁𝑁 voxel gray levels, 𝑥𝑥𝑗𝑗 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 to one of the 𝐾𝐾 clusters,
𝑃𝑃𝑖𝑖 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾 such that the within cluster sum of squares (WCSS) is
minimized (Steinley, 2006):

o Initially saturated samples for silica sand and glass beads were scanned
with the synchrotron micro X-ray computed tomography system at the
GeoSoilEnviro Consortium for Advanced Radiation Sources (GSECARS) at
Argonne National Laboratory (data courtesy of Drs. Mark Brusseau and
Juliana Araujo Lewis, University of Arizona). After each scan, a small amount
of liquid was withdrawn with a syringe and the sample was rescanned to
generate 4-D time series data encompassing eight saturation levels for
each sample.

o First, we only applied K-means clustering to visually evaluate the quality of
clustering results. As shown in Fig. 2, KM clustering is prone to voxel
misclassification. We observed numerous classification errors for both the
glass beads and silica sand, which indicates that while KM clustering may
perform reasonable well for generating seeding statistics, a more
sophisticated locally-adaptive method such as MRF is needed for more
accurate segmentation.

o The actual porosity for both samples was determined from the container
volume, the dry sample mass, and the particle density. CT-derived porosity
and associated relative percentage error for the 45/50 silica sand time
series dataset is shown in Fig. 4. The relative porosity error is computed as
𝐸𝐸𝐴𝐴 = ⁄𝜙𝜙𝐶𝐶𝐶𝐶 − 𝜙𝜙𝑀𝑀 𝜙𝜙𝑀𝑀, with 𝜙𝜙𝐶𝐶𝐶𝐶 as the porosity derived from segmented
data, and 𝜙𝜙𝑀𝑀 as the actually measured porosity.

o The introduced semi-automated, two-step KM-MRF algorithm for
multiphase segmentation only requires two input parameters, namely the
number of phases and the MRF β parameter, which brings us a step closer
to the desired unsupervised segmentation, free of operator bias.

o Results obtained for time series data for silica sand and glass beads show
that the locally adaptive KM-MRF algorithm outperforms the global K-
means algorithm.

o Potential further improvements could be achieved by considering mixture
models (e.g., Gaussian mixture model) and expectation maximization to
determine the mean and variance of each phase directly from the 3-D gray
level data.

45/50 Silica Sand

Glass Beads

where the likelihood probability 𝑃𝑃 𝑋𝑋/𝐿𝐿 represents the probability of gray
levels belonging to a particular phase, the prior probability 𝑃𝑃 𝐿𝐿 is the
probability distribution of each phase and the marginal likelihood
probability 𝑃𝑃 𝑋𝑋 is the probability distribution of observed data.

o The likelihood probability distribution is assumed to be a Gaussian
function and the prior probability is given by the Markov model. The
posterior probability can thus be maximized by solving the following
objective function (Kulkarni et al., 2012):

with 𝜇𝜇𝐿𝐿 as the mean and 𝜎𝜎𝐿𝐿 as the standard deviation of labeling L for each
phase, 𝑙𝑙𝑠𝑠𝑖𝑖 and 𝑙𝑙𝑠𝑠𝑗𝑗 as labels for sites 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗, respectively, corresponding
to voxels 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in a three dimensional space, and 𝛽𝛽 is a constant that
represents the homogeneity between phases.
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o Solving the objective function is a combinatorial optimization problem. We
use the deterministic iterated conditional modes algorithm as it yields a
local optimum and is computationally less intensive than heuristic
algorithms (Kulkarni et al., 2012).













−∑ ∑
= ∈

K

i Px
ij

P
ij

xx
1

minarg

with 𝑥̅𝑥𝑖𝑖 as the mean of the voxels in the cluster 𝑃𝑃𝑖𝑖, and − representing
Euclidean distance.

o The MRF algorithm with KM seeding performs significantly better (Fig. 3).

Figure 3: Comparison of KM (middle column) and KM-MRF (right column) segmentation. Raw data are 
in the left column. 

o The calculated relative porosity errors for KM-MRF segmentation are
significantly lower than for sole KM segmentation for silica sand (Fig.4).
Similar results were obtained for the glass beads.

Please note that while many available segmentation codes apply 2-D
“slice-by-slice” processing, all applied algorithms used for this study
were coded for true 3-D segmentation, considering the voxel
neighborhood in z-direction. Furthermore, the seeding statistics for
MRF segmentation were determined once for each data time series
for the samples with approximately 50% liquid saturation and then
uniformly applied to the remaining samples.
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