Alternatives to timothy grown in mixture with alfalfa in Quebec

Florence Pomerleau-Lacasse¹, Philippe Seguin¹, Gaétan Tremblay², Gilles Bélanger³, Julie Lajeunesse⁴, Edith Charbonneau⁴

¹McGill University, ²Agriculture and Agri-Food (AAFC), Quebec Research and Development Centre, ³AAFC, Normandin Research Farm, ⁴Université Laval

CONTEXT

→ The main grass associated with alfalfa, in Quebec, is timothy, although it has a limited regrowth potential under drought conditions.
→ An increase in temperature and moisture stress is predicted with climate change.
→ The warmer and dryer summers could negatively affect the productivity and persistence of timothy.

APPROACH

Objective

Measure the potential of five grasses as alternatives to timothy at three contrasted sites in Quebec:

★ = Normandin
★ = St-Augustin-de-Desmaures
★ = Ste-Anne-de-Bellevue

Methodology

→ Six binary mixtures of alfalfa (cv. Calypso) and:
 - Timothy (cv. AC Alliance)
 - Festulolium (cv. Spring Green)
 - Tall fescue (cv. Carnival)
 - Perennial ryegrass (cv. Remington)
 - Meadow fescue (common seed)
 - Meadow bromegrass (cv. Fleet)

→ Two developmental stages at harvest: early bud and early flower of alfalfa.
→ Two to four harvests per year.

CONCLUSIONS

→ None of the evaluated mixtures outperformed the alfalfa-timothy mixture in terms of seasonal yield and estimated milk production per hectare.
→ Tall fescue, meadow fescue and meadow bromegrass seem to be potential alternatives in our current climatic context. In contrast, festulolium and perennial ryegrass did not perform well at two of the three sites.
→ Results from a third production year for the nutritive value will allow us to finalize the identification of grasses that can preferentially be grown in mixture with alfalfa dairy producers in Quebec.

RESULTS

Average seasonal yield of six alfalfa-grass binary mixtures for the first three production years.

A) Normandin

B) St-Augustin-de-Desmaures

C) Ste-Anne-de-Bellevue

→ At St-Augustin-de-Desmaures, the 6 mixtures had similar seasonal yields.
→ At Normandin and Ste-Anne-de-Bellevue, yields for the mixtures with tall fescue, meadow fescue and meadow bromegrass were similar to that of the alfalfa-timothy mixture.
→ Grass yield in the alfalfa-tall fescue mixture was similar to that of timothy, at St-Augustin-de-Desmaures and Ste-Anne-de-Bellevue.

Nutritive value of the mixtures (first 2 production years)

→ None of the mixtures had a consistently greater of lower nutritive value than the alfalfa-timothy mixture (3 sites).
→ Mixtures with festulolium and perennial ryegrass were sometimes associated with an lower estimated milk production per hectare of forage (Normandin and Ste-Anne-de-Bellevue).
→ The other mixtures were associated with an estimated milk production per hectare that was comparable to the alfalfa-timothy mixture (3 sites).
→ The estimated milk production per hectare for the six mixtures follows a similar trend to seasonal yield.

Decrease in grass contribution in two mixtures between 2015 and 2016 at Ste-Anne-de-Bellevue.

→ Mixtures with festulolium and perennial ryegrass had lower seasonal yields to the alfalfa-timothy mixture at Ste-Anne-de-Bellevue.
→ The yield contribution of these two grasses was close to zero at Normandin.
→ These two later sites have experienced particularly extreme winter conditions.
→ These results confirm the winter susceptibility of the festulolium and perennial ryegrass cultivars used in the project.

Effects of the developmental stages

→ The seasonal yield was similar or greater when mixtures were harvested at the early flower stage of alfalfa (vs. early bud stage).
→ The difference in yield between the two stages generally became more pronounced in the second and third production years.
→ Forages harvested at the early flower stage had a lower nutritive value than those harvested at the early bud stage. They were, however, associated with a similar or greater estimated milk production per hectare.
→ Harvesting at the early flower stage of alfalfa seem to promote yield, persistence and estimated milk production.