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Introduction

Soils hold four times the amount of carbon (C) stored in 

the atmosphere1. About half of this is found deep within 

soils2. About 90% of this deep soil C is stabilized by 

mineral-organic associations3 (MOAs). Plants are a major 

conduit of C from the atmosphere into the soil, releasing 

between 25-40% of the photosynthetically fixed C as 

rhizodeposits into the soil4. Root-driven weathering of 

primary minerals may form reactive secondary mineral 

phases. If soil C binds to these phases to form mineral-

organic associations, it persists for centuries to millennia.  

However, rhizogenic weathering may also destabilize 

mineral-organic associations. It appears that root-derived 

C can increase C stocks in deep soils5, and diminish C 

through disruption of mineral-organic associations3. Yet 

their relative impact on deep C pools is still unknown.7

Objective
Examine root impacts on soil C residence time and 

chemistry, mineralogy and mineral-organic 

associations across the Santa Cruz Marine Terrace 

chronosequence (65ka-226ka).

Hypothesis
Root induced mineral weathering controls formation and 

disruption of mineral-organic associations, and therefore 

regulates carbon storage in deep soil.

Approach
We focused on the Santa Cruz Marine Terrace 

Chronosequence, with grey and red splits from root 

zones (rhizosphere & non-rhizosphere respectively)
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• Initial rhizogenic 

weathering (terrace 2) 

increases total soil carbon. 

Total C in non-rhizosphere 

soil steadily declines.

• C accumulation along with 

initial rhizosphere 

weathering coincides with 

substantially greater 

residence times.(lower FM 

values).

Carbon Quantity and Age

Mössbauer

• Both rhizosphere and non-rhizosphere are dominated by Fe in 

nanogoethite and in clays (data not shown).

• With the onset of weathering in terrace 2, a dominant, more 

disordered nanogoethite phase - likely substituted with Al & C - is 

created (type 4), but decreases in abundance as weathering 

progresses.

• Microbially-derived compounds (blue) increase gradually in the non-

rhizosphere.

• The contribution of microbially-derived compounds shows a sharp 

increase in the rhizosphere, followed by a steady decline. 

High-resolution Mass Spectrometry
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Analysis of Fe-C Associations Using Spectromicroscopy
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Sequential Extractions

• Rhizosphere soil contains larger quantities of poorly crystalline Fe & Al 

phases.

• Initial rhizogenic weathering (terrace 2) sharply increases abundance 

of poorly-crystalline phases, as well as the amount of C associated 

with it, which then both continue to decline.

• More crystalline phases, and the amount of C associated with them, 

increases steadily in the non-rhizosphere soils.

Terrace 1

65kyr

Terrace 2

90kyr

Terrace 3 

137kyr
Terrace 5

226kyr

Fe-C Map & Correlation

Diagram

Colocalization of C and Fe

• Initial rhizogenic weathering (terrace 2) increases the 

spatial correlation between C and Fe.

• Thereafter, the correlation becomes weaker (terraces 3-5).

• In the non-rhizosphere, the spatial correlation gradually 

becomes weaker.

Spatial Correlation Between C and Fe

• The fraction of C and Fe associated with each other 

increases initially (terrace 2), and decreases sharply 

thereafter. 

• In the non-rhizosphere soil, the percent of C associated 

with Fe remains somewhat constant.

Conclusions

• Rhizosphere and non-rhizosphere soils show distinct weathering patterns with regards to 

the formation and transformation of mineral-organic associations.

• Initial rhizogenic weathering creates strong associations between microbially-derived C 

and poorly crystalline Fe (and Al) phases. At later stages, rhizogenic weathering 

transforms poorly crystalline into less reactive, more crystalline phases that retain lower 

amounts of C. 

• Because this pattern was not observed in non-rhizosphere soils, we postulate that root 

activity is the main driver behind the frequently observed increase in C accumulation in the 

presence of poorly crystalline minerals during initial soil weathering8,9.

• Our results suggest that root activity is a largely overlooked factor in the formation and 

disruption of mineral-organic associations in soils. 
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