

CREATION AND MAPPING OF A NEW MAPPING POPULATION TO IDENTIFY NOVEL QTLS FOR AFLATOXIN ACCUMULATION RESISTANCE IN MAIZE Oluwaseun F. Ogunola¹, Marilyn L. Warburton², W. Paul Williams², Wenwei Xu³

¹Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA. ²USDA Corn Host Plant Resistance Research Unit, Mississippi State University, Mississippi State, MS, USA. ³Department of Soil and Crop sciences, Texas A&M Agrilife Research, Lubbock, TX, USA.

Introduction

Maize (Zea mays) is a staple food of global importance. It can be infected with Aspergillus flavus, a fungus that produces the carcinogenic aflatoxin. Host plant resistance is one of the most efficient methods of reducing aflatoxin accumulation in maize. Developing a QTL mapping population helps to identify genes and/or genomic regions responsible for a trait.

0.0 PZB094_1 0.0 ³/₁ S3_20565 0.0 PZB194_1 1.4 bnlg4_45 0.0-umc 1298 0.0++Bnlg 108 16.1+PZB022_1 32.6 Bnlg1_165 35.2 umc18_596 23.3 Bnlg 108_8 39.8 S5_11557 37.5 PZE1_372 40.5 PHM159_7 100.6 umc 128_2 50.0+ PZB527_1 46.5+Umc1028 59.2++PHM32_31 128.5 PHM16_35 101.2+ae1_7 81.7++ PZE03089 154.3 Bnlg 1556 98.9+PZE97445 171.2 PZA436_7 53.6+GRMZ_548 178.9 phi 037 140.7+ Zm.634_148 122.6 PZ0494_2 211.8 PHM527_2 162.9↓ PHM8 25 265.5 Bin1.08_214 86.1 S3_2782

Objectives

Identification of novel QTLs from new donor lines contributing to aflatoxin accumulation resistance in maize.

Materials and methods

• An F_{2.3} population was constructed from an initial cross between CML69, an aflatoxin resistant genotype unrelated to all currently known and mapped resistant donor lines, and Va35, a susceptible, southern adapted NH 50

140.2 S3_11489 10 0.0∏ PZA13_2 0.0 1 umc 1248 0.0 1 PZA22_1 23.6 PZB910_1 20.3 PHM28_83 27.0 PZB815_25 7.1 PHM05_6 43.9 PHM70_19 22.6 Zm.1_266 46.1+GRMZ1192_4 98.2+ PZA673_1 108.2 PZA42_2 48.6 PZA45_1 104.5 PZA603_1 140.7+PZA214_1 42.6 PZA58_22 129.5 PZA527_2 162.9 PHM61_3 72.6 PHM8_12 77.5 PZA076_4 Figure 1: Genetic map showing all 10 chromosomes with the relative distance between the markers. Table 1: Single marker analysis of 3 most 80 significant markers possibly linked to a S 70 QTL. ₹60

inbred line.

- **Ь** 40 350 SNPs and 60 SSRs were screened on the MBER 20 parents and F_1 . 58 SNPs and 14 SSRs polymorphic between the parents were 2 10 selected and mapped.
- Joinmap, TASSEL and QTL cartographer were used for map creation and data analysis.

Results and Discussion

0

Figure 1. Preliminary genetic map showing polymorphic markers and their positions on the chromosome. The map also shows the position of a QTL or gene linked to the trait (1). Chr. 3 has a marker (PZB0494_2) that falls under a potential QTL as seen by the QTL cartographer output (figure not shown). See Table 1.

Figure 2. Mean distribution curve of aflatoxin levels in the 238 F_{2:3} families in one environment. The uneven distribution is due to the unfavorable environmental conditions for aflatoxin production by A. flavus. Both parents also has very low aflatoxin levels due to the same

Table 1. Single marker analysis suggesting 5 markers linked to QTLs on Chr 3 and Chr 9. The pr(F) is a measure of the probability that the markers are linked to a QTL with a 95% confidence interval.

• Phenotyping of three more tests (environments) in RCB design for all 238 families in the population is underway. • More markers are being screened for polymorphisms between the parents and the F₁ of the mapping population to complete the molecular map presented in the study.