Root traits of winter annual cover crops as monocultures and mixtures

Joseph Amsili and Jason Kaye

Introduction

- Cover crops are invaluable tools for designing sustainable crop rotations that enhance soil health and mitigate nutrient pollution.
- Roots play an important role in building soil organic matter, accessing water and nutrients, and more.
- Cover crop root traits remain poorly studied.
- If farmers are planting cover crops to build soil organic matter, cover crops should be evaluated based on root traits in addition to aboveground traits.

Research Questions

- 1. How do cover crop species vary in the quantity, quality, and distribution of their root biomass in fall and spring?
- 2. How are root traits of monocultures expressed in the cover crop mixture?

Methods

- Research was conducted in an on-going (2012-2018) organic maize silage-soybean-winter wheat field experiment in central Pennsylvania.
- Cover crop treatments (see below) were planted after winter wheat in rows spaced 7 inches apart.
- In fall 2016 and spring 2017, belowground biomass was sampled from four cover crop treatments: triticale, crimson clover, canola, and a mixture that contained crimson clover, canola, and triticale.
- In-row and between-row locations were sampled with a 10.3 cm diameter soil core to a depth of 40 cm.
- Each core was split into 0-5 cm, 5-20 cm, and 20-40 cm depth intervals.

Cover Crop Treatments

Results

- Triticale produced more root biomass at 0-5 cm than crimson clover and the mix in fall 2016.
- Triticale had the highest root:shoot (R:S) ratio in fall.

In spring 2017, triticale had more root biomass than other cover crop treatments at 5-20 cm, 20-40 cm, and 0-40 cm.

Triticale exhibited 2-3 times more root biomass in the between-row space than other treatments at all depth intervals (data not shown) in both fall and spring.

Root biomass

reflects the

average of

in-row and

between-row

cores.

The mixture had more < 2 mm root biomass than canola in spring.
 Spring 2017 root size fractions

- Triticale had the highest carbon:nitrogen (C:N) ratio for < 2 mm roots in both fall and spring.
- The mixture and canola's > 2 mm roots C:N ratio were significantly wider in spring than they were in fall.
- The mixture had an intermediate C:N ratio between canola and crimson clover in spring.

Conclusions & Future Directions

- Triticale can have high R:S ratios in fall.
- Triticale, a monocot species, was able to produce more roots in the between-row space than crimson clover, canola, and the mixture.
- Combining monocot and dicot species led to more
 < 2 mm root biomass than canola.
- Canola's > 2 mm roots had a wider C:N ratio in spring than in fall.

Acknowledgments

Funding comes from the USDA Organic Research and Extension Initiative (OREI) Prop No: 2015-07433.

Artistic Representation of Root Distribution Results

