

Ozone is harmful to soybean

- Foliar injury.
 - Caused by accumulation of
 - Red bronzing and chlorosis i soybean.
- Decrease in photosynthesis.
- Decrease in Rubisco activity. 3. Reduction in yield.
 - Reduced photosynthesis lead reduction in growth and yiel
 - Also attributed to early senescence.
- O₃ levels are projected to climb 20-25% between 201 2050.
- Economic losses caused by O₃ are estimated at \$3 to billion each year.

Leaf injury highest in Mandarin (Ottawa)

Conclusions

Confirmed Fiskeby III to be an ozone-tolerant genotype. \bullet Reduced stomatal conductance contributes to the observed ozone-tolerance through limiting ozone uptake.

Comparison of Stomatal Conductance in Ozone Tolerant and Sensitive Soybean.

Amanda Roth^{1,2}, Kent Burkey²

1. North Carolina State University, Raleigh, NC 2. USDA-ARS, Plant Science Research Unit, Raleigh, NC

	Stomatal conductance a	as a tolerand	
H ₂ O ₂ . in	 With lower conductance, leaf resulting in less injury. Lower conductance resulting 	 Lower conductance resulting in less injur 	
	observed in wheat.		
ds to d	Objective	s-section	
.5 and \$5	 Examine leaf gas exchange measurements at different canopy leaf positions in contrasting soybean genotypes. 	Image: lead cross-image: lead c	

Differences in stomatal conductance

- Fiskeby III had lower conductance in the CF than Mandarin (Ottawa).
- In the O₃ treatment, Fiskeby III had higher conductance than Mandarin (Ottawa).
- Mandarin (Ottawa) had a greater reduction in conductance than Fiskeby III due to O_3 exposure.

Future Work

 Investigate how Fiskeby III is able to maintain rates of photosynthesis similar to Mandadrin (Ottawa) at a lower conductance.

ce mechanism

enter into the

Materials and methods

- Genotypes: Mandarin (Ottawa) and Fiskeby III, known to be sensitive and tolerant to O_3 , respectively.
- 3 week old soybeans placed in CSTR.
- Treatments of charcoal filter air (CF) or 70ppb O_3 .
- Measured leaf gas exchange measurements with LI-COR 6400 on the 3rd, 4th, and 5th trifoliate on the 4th day of exposure.
- Foliar injury scores collected 3 days after the exposure ended.

Fiskeby III Mandarin (Ottawa)

Differences in photosynthetic rates

- O₃ reduced photosynthesis in both genotypes.
- leaves.
- similar rates of photosynthesis.

Acknowledgments

Brandi Creech Cam Hunter Consuelo Arellano Rich Zobel

Walt Pursley Sam Ray Renee Tucker Sayed Mashaheet

NC STATE UNIVERSITY

• Mandarin (Ottawa) had greater reduction in the older

In CF treatment Fiskeby III and Mandarin (Ottawa) had

Kenny Isley Salvio Torres Jeff Barton