
PLANT SAMPLE MEASUREMENTS
• Variability among plant samples within sampling date was

substantially greater as growth stage progressed from V5 to V8 to
V10, especially for above-ground biomass and LAI (Figure 3).

• Plant height and above-ground biomass were most closely related of
all biophysical parameters (R2 = 0.87); as plant height increased,
above-ground biomass increased exponentially.

• The kernel density estimates (i.e., probability) for plant height and
MCARI2 are similar, but those for above-ground biomass and LAI are
skewed and not similar at V8 and V10.

Figure 3: Scatterplot matrix illustrating relationships among plant height, above-
ground biomass, leaf area index (LAI), and Improved Modified Chlorophyll
Absorption Ratio Index (MCARI2). Plots on the diagonal are kernel density
estimates illustrating relative probability of occurrence for respective variables.
Colors represent samples collected at different growth stages (i.e., V5, V8, and
V10). *Note: MCARI2 is the only variable indirectly measured (via spectral data).
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PREDICTING BIOPHYSICAL PARAMETERS WITH
SPECTRAL INFORMATION
• An exponential curve best explained the relationships between

MCARI2 each of the three plant biophysical parameters (Figure 3).
• Of the three biophysical parameters measured, plant height had the

closest relationship with MCARI2 (R2 = 0.70), followed by above-
ground biomass (R2 = 0.57), then by LAI (R2 = 0.46).

• There was a tendency of all three biophysical parameters to be
slightly overestimated with low measured/predicted values and
underestimated with high measured/predicted values; evidence of
this can be seen in Figure 4 with the less-steep slopes of the best-fit
lines (black) compared to the 1:1 line (red).

• The 95% confidence intervals for the best-fit line between measured
and predicted values were wider for the lowest and highest values
compared to intermediate values (Figure 4).

• The root mean square error (RMSE) between measured and
predicted values increased as growth stage progressed (Figure 5).

• Above-ground biomass at V5 had a higher RMSE than at either V8 or
V10, but this was attributed to the small sample size (n=7) at that
growth stage (Figure 5).

Figure 4: Measured versus MCARI2 predicted values for plant height (a),
above-ground biomass (b), and leaf area index (c). The black line represents
the best-fit between measured and predicted data points, the black shadow
area represents a 95% confidence interval, and the red line represents a perfect
1:1 relationship.

FIELD SITE AND TREATMENTS
• An experiment was conducted in 2017 at the Agricultural Ecology

Research Farm at the Southern Research and Outreach Center near
Waseca, MN.

• Four N fertilizer rates (0, 67, 135, and 202 kg N ha-1) were applied to
a total of eight plots to ensure differences in plant growth among
treatments.
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PLANT SAMPLING
• In each treatment plot, six maize plants were chosen for sampling.

Painted stakes were placed between corn rows and aligned with the
North-most and South-most plants to be sampled; every third plant in
each row was sampled (Figure 2).

• Plant height and LAI (LI-COR LAI-2000; Lincoln, NE) were measured
for each plant (n=48) at the V5, V8, and V10 growth stages.

• Following all other field measurements and image acquisition, plants
were cut at ground-level and placed in a 100° C oven for drying.

• After drying for several days, samples were weighed to determine
above-ground biomass (dry weight basis); note that above-ground
biomass at V5 was consolidated by plot (n=6).

Figure 2: Hyperspectral aerial imagery (top row) and ground-photos (bottom
row) of sampling areas at V5 (left), V8, (middle), and V10 (right) growth stages.
Plot stakes were placed on the ground to identify the plants to be sampled in
the aerial imagery. Boxes in the V5 column indicate the sampled plants.
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IMAGE ACQUISITION
• Hyperspectral aerial images (2.1 nm spectral resolution) were captured

with a gimbal-stabilized Pika II line-scanning hyperspectral camera
(Resonon, Inc.; Bozeman, MT) mounted on an unmanned hexacopter
(DJI Matrice 600 Pro, Nanshan District, Shenzhen, China; Figure 1).

• DJI Ground Station Pro (iPad app) was used to create and execute flight
plans for controlling altitude, heading, and ground speed (Table 1).

• Grey reference panels with known reflective properties were placed in
the study area prior to image capture; panels were 60 x 60 cm and
the surface was 50% BaSO4/50% grey paint by weight.

Table 1: Camera and flight specifications for each growth stage/sampling date.

__________________________________________________________________________________________________________

IMAGE PROCESSING
• Radiometric correction was performed via SpectrononPro software

(Resonon, Inc.; Bozeman, MT) using the calibration file provided by
Resonon for the specific camera and lens that were used.

• Pixels representing the grey reference panels were used to convert
spectral radiance to surface reflectance across all images.

• Imagery was visually inspected to determine the plants that were
chosen for sampling; ENVI software version 5.2 (Harris Geospatial
Solutions, Inc.) was used to create bounding squares around each
sampled plant (see V5 column of Figure 2).

• Bounding squares for the image data were 9 x 9 pixels in size (~550
cm2) for the V5 and V8 growth stages, and 3 x 3 pixels in size (~620
cm2) for the V10 growth stage.

• Only spectral data extracted from the area of each sampled plant’s
bounding square were used for analysis.

• The Improved Modified Chlorophyll Absorption Ratio Index (MCARI2;
Equation 1) was applied to each pixel; MCARI2 incorporates a soil
adjustment factor while preserving sensitivity to LAI and resistance to
chlorophyll influence and has been shown to be a good predictor of
green LAI (Haboudane et al., 2004).

Equation 1: MCARI2 spectral vegetation index.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 =
1.5[2.5 ρ800 − ρ670 − 1.3(ρ800 − ρ550)

(2 ∗ ρ800 + 1)2− 6 ∗ ρ800 − 5 ∗ ρ670 − 0.5

CROSS-VALIDATION
• A cross-validation approach was implemented that compared

measured and predicted measurements after randomly assigning
90% of the values to a training dataset and the remaining 10% to a
test dataset. Cross-validation was performed iteratively for each
measurement until every sample was included in a test dataset (each
iteration was independent of any other).

• The mean RMSE values from the cross-validation were less than the
RMSE values from the full dataset (Figure 5), indicating that the
reported prediction models do not over-fit the measured data.

Figure 5: Root mean square error (RMSE) between MCARI2 and each
biophysical measurement within growth stage. Cross-validation is denoted by
“C-V”, and the number of samples that were used is labeled above each bar.

• The MCARI2 spectral index extracted from high resolution,
narrowband aerial imagery produced satisfactory results for
estimating plant height, above-ground biomass, and LAI.

• The measured/predicted plant height best-fit line had a closer
relationship to the perfect 1:1 line than either above-ground biomass
or LAI, which suggests that estimating plant height via MCARI2 is
more accurate than estimating either above-ground biomass or LAI.

• It is unclear how well above-ground biomass can be predicted at the
V5 growth stage from this experiment due to a small number of
samples.

• Error between measured and predicted values increased as growth stage
progressed, especially for biomass and LAI; this suggests that perhaps a
separate model should be utilized after V8 (e.g., nearly all biomass
samples > 15 g and nearly all LAI samples > 1.2 were underestimated).

• The prediction models reported herein did not over-fit the measured
data (determined via cross-validation), but it is clear that predictions
were generally overestimated at V5 and underestimated at V10.

• The approach described herein for predicting plant biophysical
parameters is a viable option for reliably informing remote
sensing algorithms and crop models, but variability of such
estimations should be considered when interpreting the final
precision N fertilizer recommendations.

__________________________________________________________________________________________________________

FUTURE DIRECTION
• The full hyperspectral dataset (240 bands from ~400 – ~900 nm) will

be used to model these same biophysical parameters to determine if
models can be improved.

• We plan to use these approaches in a future experiment to calibrate
remote sensing algorithms and crop systems models for estimating
optimum rates of N fertilizer during the crop season.

__________________________________________________________________________________________________________
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SPATIAL VARIABILITY EXISTS IN SOIL
• Maize yield and fertilizer requirement vary spatially (Machado et al.,

2002), so precision agriculture techniques can be used to estimate
and apply the economic optimum nitrogen (N) rate variably over
space and time (Holland & Schepers, 2010).

• Knowledge of plant height is generally a strong indicator of how soil
spatial variability affects crop growth and yield potential (Machado et
al., 2002), especially when it is used in combination with spectral
indices (Sharma et al., 2016).

• Leaf area index [LAI], defined as the green leaf area per unit
horizontal soil area (Daughtry et al., 1992; Watson, 1947), and above-
ground biomass are two common biophysical parameters of interest,
largely because they play a key role in plant biophysical processes
and influence the spectral reflectance of vegetation canopies (Baret
et al., 2007).

• Accurate estimates of crop height, above-ground biomass,
and/or LAI are critical for informing remote sensing algorithms
and crop models (Baret et al., 2007; Casa et al., 2012; Fang et al.,
2011), which can be used to predict crop N status across space.

__________________________________________________________________________________________________________

USING SENSORS FOR ESTIMATING BIOPHYSICAL
PARAMETERS – MOTIVATION
• Measuring above-ground biomass and LAI via destructive methods is

both time consuming and costly, especially as the growth stage
progresses and there is more plant material to handle.

• There is strong interest in developing models for estimating these
biophysical parameters using sensors, largely because it is the only
practical method for characterizing them at scale.

• There are several nondestructive sensor-based methods published in
recent literature to estimate plant height, LAI, and/or above-ground
biomass (references available upon request), some of which include:

 Optical spectral sensors

 Spectral imagers – focus of this experiment (Figure 1)

 Structured light/depth cameras (e.g., Microsoft Kinect®)

 3D reconstruction/Structure from Motion

 Acoustic height sensors

 Terrestrial laser scanners

• There are tradeoffs for each of these methods related to accuracy,
scale, processing power, and/or implementation feasibility for
estimating plant height, LAI, or above-ground biomass.

• Prediction models that use spectral data to predict plant biophysical
parameters tend to over-fit and are generally constrained to local
conditions, limiting their use under varying conditions (e.g., growth
stages, variety/hybrid, soil color etc.).

Figure 1: Muhammad Tahir (right), Aicam Laacouri (middle), and
myself (left) preparing the hexacopter and gimbal-mounted
hyperspectral camera (inset photo) for aerial image acquisition.

1. Investigate the relationships among maize
height, LAI, above-ground biomass, and
spectral reflectance during early growth
stages (V5 - V10).

2. Determine the reliability of spectral imagery
to predict height, LAI, and biomass.
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Growth 
Stage Date Camera 

Framerate
Flight 

Altitude (m)

Ground
Speed
(m s-1)

Ground 
Sampling 
Distance

V5 15 June 2017 99 30 2.5 2.5 cm
V8 26 June 2017 91 30 2.5 2.7 cm

V10 01 July 2017 109 90 9.0 8.3 cm
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