Nutrients and Heavy Metals Distribution in Thermally Treated Manure

Ksawery Kuligowski, Tjalfe Gorm Poulsen

Environmental Engineering Section, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark
Among pigs…

1. Do you know that there is already 2255mln of us in Denmark?
2. WOW, that’s 5 per 1 Danish citizen! Why so much?
3. To feed 3 times more people than population of Denmark.
4. And improve the economy!
5. Do you know that we produce 11.6 t of manure dry matter per year?
6. SO MUCH!!? How do humans deal with our wastes?
7. They store it, apply on agricultural land and burn to get energy.
8. If I was a human, I would try to use ashes as fertilizers.
9. To protect the environment and improve the economy!

ABSTRACT

Ashes from pig manure treated by combustion (IA) and thermal gasification (GA) are characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations were measured using energy dispersive X-ray fluorescence (EDXRF) analysis. Acid (HNO₃, H₂SO₄) and water extractable concentrations were also measured both in non-classified ash and in selected ash particle size fractions using flame atomic absorption spectrometry (FAAS) and colorimetric spectrometry. Ash from gasified manure contains more water soluble K compared to combusted manure whereas the opposite is the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (<30μm of particle diameter), whereas K, P, Zn and Cu exhibited higher concentrations in the coarser particle size fractions (>30μm).

Materials & Methods

Fig. 1 Untreated, dewatered, thermally dried (90% DM) and pelletized pig manure from Fangel Biogas Plant, Denmark – fuel for LT-CFB gasifier (a)…
Fig. 2 Schematic of LT-CFB gasifier with arrows indicating the composition of material streams. Numbers 1, 2, 3 denote primary, secondary and tertiary cyclones.

Fig. 3 Picture of LT-CFB gasifier at DTU, Copenhagen and the view of the 5m long tank for 2nd and 3rd ash.

Fig. 4 Ash from thermal gasification of pig manure (a) and its particles seen under the microscope (b) (GA).

Fig. 5 Ash from incineration of pig manure at 1000°C after 24h (IA).

SAMPLE ANALYSIS

Additionally

- Ash (mixed, non-classified) from gasification
- Ash from incineration
- Dried and pelletized manure (gasifier fuel)

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>H$_2$O extraction, H$_2$SO$_4$ and HNO$_3$ digestion (120°C, 30min) + colorimetric spectrometry, EDXRF</td>
</tr>
<tr>
<td>K</td>
<td>H$_2$O extraction, HNO$_3$ digestion (120°C, 30min) + FAAS, EDXRF</td>
</tr>
<tr>
<td>Zn</td>
<td>HNO$_3$ digestion (120°C, 30min) + FAAS, EDXRF</td>
</tr>
<tr>
<td>Cu</td>
<td>HNO$_3$ digestion (120°C, 30min) + FAAS, EDXRF</td>
</tr>
<tr>
<td>Cd</td>
<td>HNO$_3$ digestion (120°C, 30min) + FAAS, EDXRF</td>
</tr>
<tr>
<td>Ni</td>
<td>HNO$_3$ digestion (120°C, 30min) + FAAS, EDXRF</td>
</tr>
</tbody>
</table>
Results

PARTICLE SIZE ANALYSIS

Fig. 6 Cumulative particle size distributions of gasified fiber residue ash from the secondary and tertiary cyclones of the LT-CFB gasifier.

NUTRIENTS

Fig. 7 Concentration of: (a) K and (b) P in combusted (IA), thermally gasified (GA2, and GA3) and dewatered fiber residue (PEL) in reference to incombustible matter (IM). Data measured using different methods are shown. Note that values for P measured by H2O extraction refer to the secondary logarithmic axis.

Fig. 8 Nutrient (total K and P) concentrations in ash particle size fractions from thermally gasified fiber residue; a), c) – secondary cyclone ash and b), d) – tertiary cyclone ash. Data measured using different extraction methods are shown. Concentrations refer to the particular fractions (fr).

HEAVY METALS

Fig. 9 Total heavy metal (Zn, Cu, Cr, Ni, and Cd) concentrations in thermally treated fiber residue; a) IA and b) PEL in reference to incombustible matter (IM). Data measured using different extraction methods are shown.
Fig. 9 Total heavy metal (Zn, Cu, Cr, Ni, and Cd) concentrations in thermally treated fiber residue; c) GA2, d) GA3. Data measured using different extraction methods are shown.

Fig. 10 Distribution of total heavy metal concentrations in ash fractions from thermally gasified fiber residue; a), c) – secondary cyclone ash and b), d) – tertiary cyclone ash. Data measured using different extraction methods are shown. Concentrations refer to the particular fractions (fr).

CONCLUSIONS

Incinerated manure ash contained 27g/kg K, whereas gasified ash had 25% more of K. Both ashes contained about 55g/kg P. Water and acid extractable K in both ashes was 30-50% of the total amount. Water extractable P was about 1% of the total in ash from combustion but only 0.04% in ash from gasification. This indicates that P availability for plant growth may be lower in the gasified ash. Acid extractable P was about 100% in both ashes. Both ashes contained about 3000-4500mg/kg Zn, 450-600mg/kg Cu and 240-280mg/kg Cr. Acid extractability of these metals was 30-40% in both ashes, for Cd and Ni the values were 50-100mg/kg and 30-120mg/kg, respectively. Concentrations of acid extractable Ni, Cd, and Cr in the gasified ash increased with decreasing particle size. Removal of some of the smallest particle fractions could therefore improve ash quality with respect to these metals. Cu and Zn concentrations increased with increasing particle size, so did P and K.

The total concentrations of nutrients and heavy metals do not necessarily reflect the potential risk of leaching to the groundwater of these compounds in connection with utilization of the ash as fertilizer on farmland. It is likely that fine ash particles which can move easily through soil may function as carrier for nutrients and metals adsorbed to the particles. To evaluate the leaching potential, leaching and mobility experiments should be conducted.

References: