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Introduction

Cellulosic bioenergy feedstock production analyses often include simple breakeven
comparisons of production alternatives versus current cropping practices, ignoring
effects of spatial and temporal production variability and transportation costs.
While this approach provides a rough estimate of potential biomass feedstock
costs, it can lead to erroneous conclusions about the production practices that are
likely to occur. This is particularly important when evaluating potential
environmental impacts of bioenergy feedstock production, since these impacts are
closely tied to production practices. As biomass price increases, producers will
have a profit incentive to increase biomass harvest. For crop residues this may
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Results

*Profit maximizing residue harvest practices varied spatially
as influenced by both soil productivity and transportation
costs (Figures 1a,1b, 1c).

* Fields where wheat straw harvest, or both corn
stover and wheat straw harvest was optimal were
generally in a C-SW-SB rotation in the baseline, while
fields where corn stover harvest was optimal were
generally in a C-SB rotation. Some rotation shifts

A » i occured at higher biomass prices.

mean harvesting residues more frequently within a crop rotation, or, if prices $54 Mg 3 il L] - « Baseline rotation differences reflected differences in
become high enough, lead to shifts in rotation to increase biomass production. Lo soil productivity.
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may result in different profit maximizing practices given the same plant-gate i area and harvest intensity.

biomass price due to differences in transportation costs. Differences in productivity | 20 tukometors « Differences in optimum harvest practices and soil

can also lead to differences in profit maximizing practlces for a given biomass price.
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Figure 1a Location of profit maximizing residue harvest practices

for a plant-gate biomass price of $54 Mg~ 1,

Figure 2a. Water erosion impacts of profit maximizing residue harvest

nractices for a nlant-gate hiomass price of $54 Mn

Figure 3a. Soil organic carbon impacts of profit maximizing residue

harvest practices for a plant-gate biomass price of $54 Mg~ 1,

erodibility resulted in differing impacts on soil erosion

As a result, there could be substantial sp ss production |  foraplant gate biomass price of $5 practices for a plant-gate biomass price of $5 est practices for a plant gate biomass price of $5 ieveis (Figures 2a, 2b, 2c).

practices among producers within a region. The objective of this analysis was to A * Higher soil erosion levels occurred on fields where

gvaluate poteniial biofeedstoc'k supply, producti'on practices, and environmental a3 Js-r = both stover and straw harvest were optimal.

impacts for a bioenergy plant in West Central Minnesota. uj 5 * Greater incentives for higher harvest rates occurred
l“_ ey where transportation costs were low. Since a local

Biomass Price - e Ryt o highway parallels the river that flows near Morris this
o J - could lead to higher erosion rates near the river
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Bioenergy feedstock supply was estimated for a bioenergy plant located at the
University of Minnesota, Morris (UMM). For this analysis, potential biomass
supplies from crop residues only were evaluated. Three crop rotation were
included: continuous corn (CC), corn-soybean (C-SB), corn-spring wheat-soybean
(C-SW-SB). Four residue harvest scenarios were evaluated: no residue harvest
(none), corn stover harvest (stover), wheat straw harvest (straw), and both corn
stover and wheat straw harvest (stover and staw). Enterprise budgets were

Figure 1b Location of profit maximizing residue harvest practices
for a plant-gate biomass price of $56 Mg-*.

Figure 2b. Water erosion impacts of profit maximizing residue harvest
practices for a plant-gate biomass price of $56 Mg-"'.

Figure 3b. Soil organic carbon impacts of profit maximizing residue
harvest practices for a plant-gate biomass price of $56 Mg-'.

(Figure 2b).
* Increasing biomass price increased both area
eroding, and erosion intensity.

« Differences in optimum harvest practices and initial soil
organic C content resulted in differing impacts on soil
organic C (Figures 3a, 3b, 3c).

« Higher soil organic C losses occurred on fields where
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