Tuesday, 8 November 2005
15

Radiation and Energy Balance of a Kaolin Particle Coated Cotton Crop.

Robert Scott Van Pelt and Dennis C. Gitz III. USDA-ARS, 302 W I-20, Big Spring, TX 79721-0909

In semi-arid environments, clear skies and intense solar radiation may create stressful growing conditions for crops. In such environments, the radiation levels are often greater than the photosynthetically active radiation compensation point for a given crop and the excess radiation is converted to sensible heat. The increased sensible heat results in increased vapor pressure deficits, higher tissue temperatures, and reduced water use efficiency. Kaolin clay particle coatings applied to crop canopies have been shown to increase growth, yield, and quality of crops grown in several environments. We hypothesized that the coatings increase the albedo of the canopy and over-spray areas of the soil surface, thus reducing the net radiation, and resulting in cooler canopy and soil temperatures. In an experiment comparing the effects of kaolin coatings on the growth and yield of two varieties of cotton, we instrumented plots with split-band net radiometers to measure the effects of the kaolin coatings on albedo and with infrared thermocouples focused on the canopy and soil to measure the effects on canopy and soil surface temperatures. We found that the kaolin particle coatings increased the albedo between 2 and 4 % depending on the time after application and that the soil surface temperatures of the treated plots were cooler than the untreated controls. However, canopy temperatures measured remotely with infrared thermocouples were up to 5oC warmer for the treated plants than for the untreated. These results indicate that remote measurement of particle coated canopy temperatures may not be possible.

Back to Modeling Plant Growth and Yield
Back to A03 Agroclimatology & Agronomic Modeling

Back to The ASA-CSSA-SSSA International Annual Meetings (November 6-10, 2005)