
Genetic Control of Flavonoid Biosynthesis in Flower Petals of Soybean

Introduction

Soybean flowers have various colors including purple, white, near white, dilute purple, pale, pink, magenta, purple blue, and light purple (Fig. 1). Six genes (W1, W2, W3, W4, *Wm* and *Wp*) primarily control flower color in soybean (Fig. 2). This study was conducted to determine the structure and amount of flavonoids in flower petals.

(W3w4)

(W3w4)

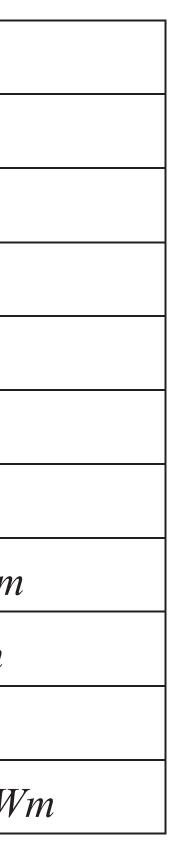
(w4-dp)

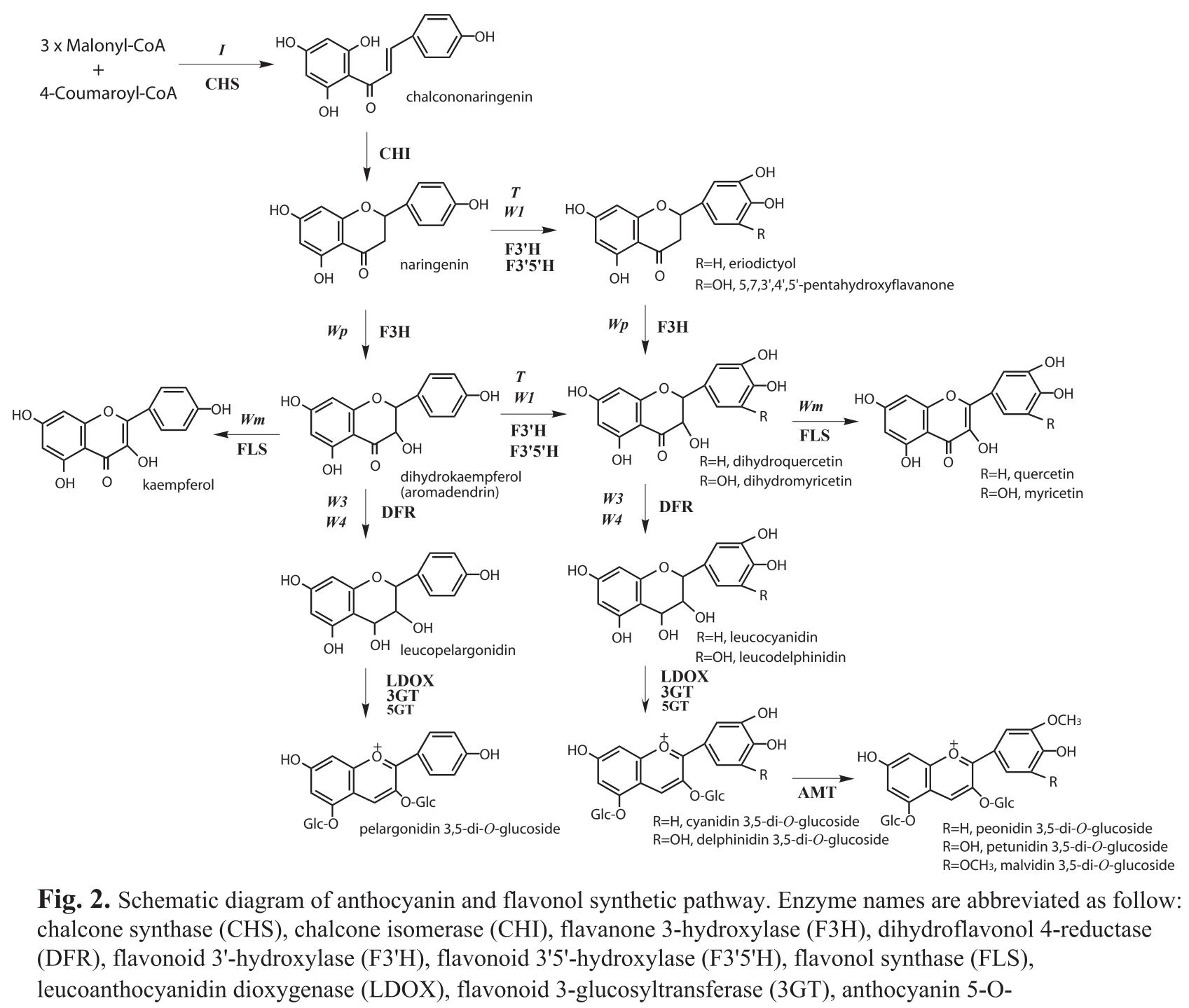
Fig 1. Banner petals of flower color varients in soybean and its wild relative *Glycine soja*.

Materials and methods

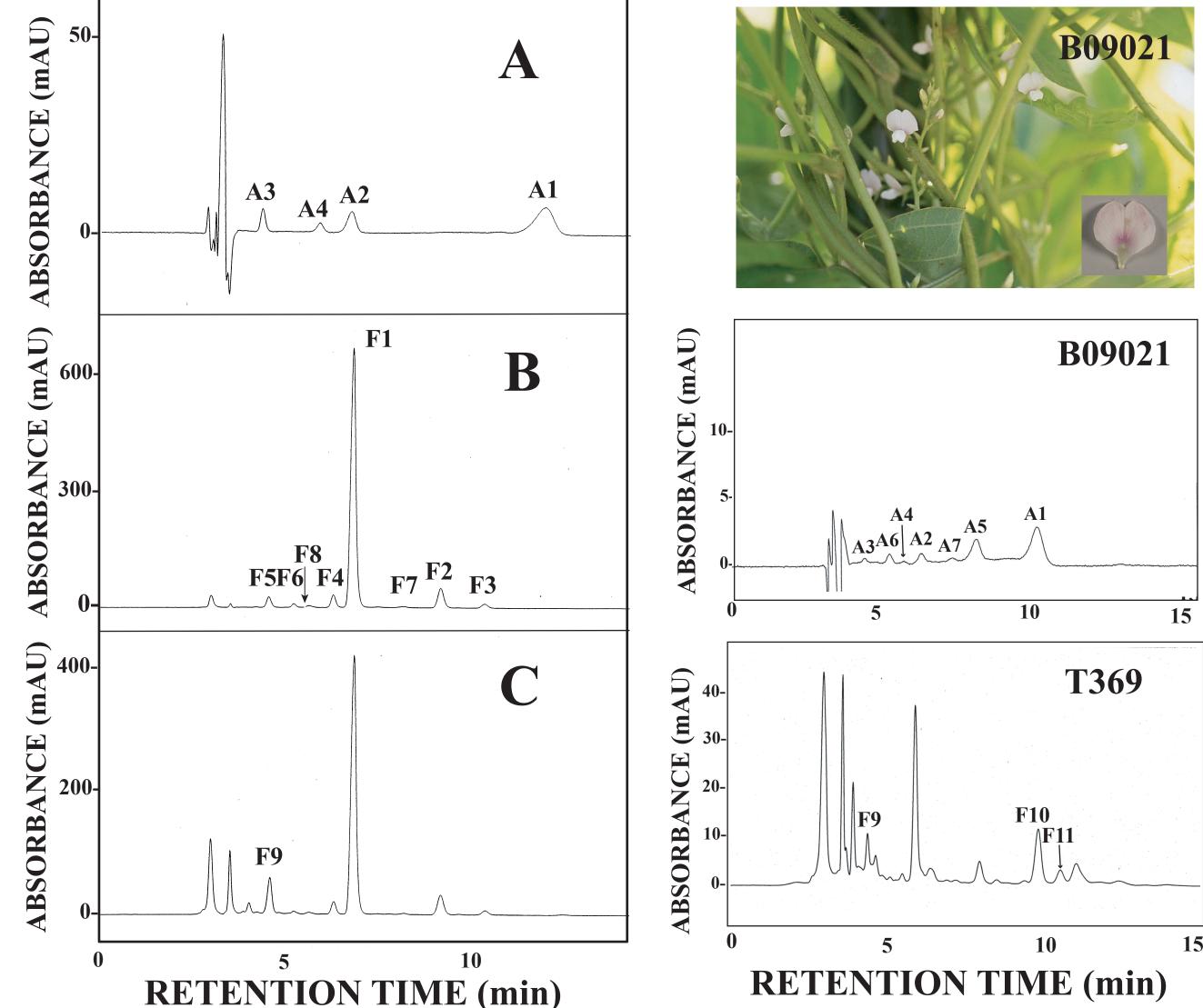
Plant materials

Ten cultivars and lines with various flower colors (Table 1) were grown in fields. 200mg of banner petals were collected in three replications. HPLC analysis


200 mg of petals was extracted with 2 ml of MeOH containing 0.1% HCl for anthocyanin or in 2 ml of MeOH for flavonols and dihydroflavonol. HPLC separation of the isolated anthocyanins, flavonols and dihydroflavonol was performed with Shimadzu HPLC systems using Shim-pack CLC-ODS at a flow rate of 1.0 ml/min, detection wavelength was 190-700 nm and eluent was MeCN/HOAc/H₂O/H₃BO₃ (6:8:83:3) for anthocyanins and MeCN/H₂O/H₃BO₃ (22:78:0.2) for flavonols and dihydroflavonols. The amount of flavonoids were estimated by measurement of peak area (detection wavelength of anthocyanins = 530 nm; flavonols= 351 nm; dihydroflavonols = 290 nm).


Table 1. Flower color and genotypes of flower color genes in soybean lines and a *Glycine soja* line used in this study.

Line name	Flower color	Genotype						
Clark	purple	W1 W2 w3 W4 Wp Wm						
Clark-w1	white	w1 W2 w3 W4 Wp Wm						
Clark-w4	near white	W1 W2 w3 w4 Wp Wm						
Clark- <i>W3w4</i>	dilute purple	W1 W2 W3 w4 Wp Wm						
Nezumisaya	purple-blue	W1 w2 w3 W4 Wp Wm						
Harosoy-wm	magenta	W1 W2 w3 W4 Wp wm						
T321	dilute purple	W1 W2 w3 w4-dp Wp Wm						
T369	pale	W1 W2 w3 w4-p Wp Wm						
LD05-15019-pink	pink	W1 W2 w3 W4 wp Wm						
B09021(G. soja)	light purple	w1-lp(t) W2 w3 W4 Wp W						


Ryoji Takahashi^{1,2}(masako@affrc.go.jp), Joseph G. Dubouzet¹, Tsukasa Iwashina³, Kentaro Yasuda⁴ ¹National Institute of Crop Science, Tsukuba, Japan; ²University of Tsukuba, Tsukuba, Japan ³Department of Botany, National Museum of Nature and Science, Tsukuba, Japan, ⁴Akita Prefectural University, Ogata, Japan

(*Glycine soja*)

glucosyltransferase (5GT) and anthocyanin methyltransferase (AMT). Soybean genes encoding the enzymes are shown on or to left of the arrows in italics.

Fig. 3. HPLC chromatogram of anthocyanins (A), flavonols (B) and dihydroflavonols (C) in flower petals of Clark. A1 = malvidin 3,5-di-*O*-glucoside, A2 = petunidin 3,5-di-*O*-glucoside, A3 = delphinidin 3,5-di-*O*-glucoside, A4 = delphinidin 3-*O*-glucoside, A5-A7 = unidentified anthocyanins, F1 = kaempferol 3-O-gentiobioside, F2 = kaempferol 3-O-rutinoside, F3 =kaempferol 3-*O*-glucoside, F4 = kaempferol 3-*O*-glycoside, F5 = kaempferol 3-*O*-rhamnosyl-(1 2)-[glucosyl-(1 6)-galactoside], F6 = quercetin 3-O-gentiobioside, F7 = kaempferol 7-Oglucoside, F8 = kaempferol 7-O-diglucoside, F9 = aromadendrin 3-O-glucoside, F10 and F11 = unidentified dihydroflavonols.

	Lines Anthocyanins									Flavonol glycosides										Dihydroflavonols			
		A1	A2	A3	A4	A5	A6	A7	Total	F1	F2	F3	F4	F5	F6	F7	F8	Total	F9	F10	F11	Total	
2003	Clark	981	715	529	515	-†	-	-	2,741	16,334	886	192	707	863	451	53	516	20,002	1,498	-	-	1,498	
	Clark-w1	-	-	-	-	-	-	_	-	14,467	1,238	385	740	883	478	201	459	18,851	1,319	-	-	1,319	
	Clark- <i>W3w4</i>	t‡	-	-	-	-	-	-	-	14,056	1,153	384	787	807	507	90	643	18,427	1,102	-	-	1,102	
	Harosoy-wm	1,734	1,052	854	739	-	-	-	4,378	872	790	273	376	-	296	341	318	3,265	4,167	-	-	4,167	
2007	Clark	766	282	399	191	-	-	_	1,638	7,581	792	221	300	323	162	88	144	9,612	789	-	-	789	
	Clark-w4	80	53	-	-	-	-	-	133	8,170	1,011	377	391	410	182	393	313	11,247	714	-	-	714	
	LD05-15019-pink	536	275	214	154	-	-	-	1,179	199	121	-	97	150	77	101	117	862	220	-	-	220	
	Nezumisaya	1,439	378	410	218	-	-	-	2,445	7,480	821	147	181	304	111	41	126	9,210	725	-	-	725	
	B09021	317	172	147	116	287	160	142	1,342	13,465	776	279	-	745	376	-	228	15,868	2,010	-	-	2,010	
2008	Clark	933	538	399	255	-	-	-	2,125	9,433	772	177	441	353	138	12	128	11,454	843	-	-	843	
	T321	369	255	178	148	-	-	-	951	9,418	805	159	371	523	100	174	287	11,838	647	-	-	647	
	T369	513	347	233	178	-	-	-	1,272	703	214	102	135	243	152	130	158	1,837	96	154	54	304	

[†]No pigment was detected.

[‡]Trace amount of pigment was detected.

1. The recessive alleles at the *W1* (white flower) or the *W4* locus (near white flower) substantially reduced the amount of anthocyanins without affecting the contents of flavonol glycosides or dihydroflavonols.

2. The recessive allele at the *Wp* locus (pink flower) reduced anthocyanins, flavonol glycosides, and dihydroflavonols. The recessive allele of the *Wm* locus (magenta flower) substantially reduced the amount of flavonol glycosides and increased dihydroflavonols without affecting the amount of anthocyanins.

3. The recessive allele of the W2 locus (purple-blue flower) did not affect amount of flavonoids, but it increased vacuolar pH of flower petals (pH = 6.10) compared to purple flower of Bay (pH = 5.73), suggesting that W2 is responsible for vacuolar acidification in flower petals.

4. A new flower color phenotype (light purple) was discovered in a Japanese accession of *Glycine soja*. Complementation analysis suggested that a new allele at the *W1* locus is responsible for light purple flowers. Light purple flowers contained three novel anthocyanins together with lower amounts of the four anthocyanins present in purple flowers. Structure of these anthocyanins is under investigation.

5. Pale flowers (*w4-p*) contained two additional dihydroflavonols. Structure of these dihydroflavonols is under investigation.

We thank Dr. R.L. Nelson (USDA/ARS) for supplying the seeds of Clark and Harosoy NILs, Dr. R.G. Palmer (Iowa State University) for the seeds of T321 and T369, Dr. B. Diers (University of Illinois) for the seeds of LD05-15019, and NIAS Genebank for the seeds of Nezumisaya.

Postdoc/Ph.D. student wanted

We are engaged in soybean research areas including flavonoids, transposable elements, flooding tolerance, seed coat cracking, cleistogamy and maturity genes. If there is anyone interested in working with us as a postdoc fellow or a Ph.D. student, please make contact with R. Takahashi at masako@affrc.go.jp.

Variegated flowers of *G. soja* Flooding treatment of RILs Seed coat cracking

Table 2. Contents of anthocyanins, flavonol glycosides and dihydroflavonols in HPLC

 analysis (x 10³) in flower petals of soybean and *Glycine soja* with various flower color.

Results

Acknowledgements

Cleistogamous flower (right)