

Soybean Nitrogen Fixation at Different Reproductive Stages and Water Regimes

Adriano T. Mastrodomênico^{*}, Larry C. Purcell and C. Andy King Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville

Introduction

In soybean (*Glycine max* [L.] Merr.), N₂ fixation is a primary source of N nutrition during seed development. N₂ fixation is recognized as a drought sensitive mechanism; however, N₂ fixation response to drought at different reproductive stages is not well documented. We tested the hypothesis that drought during late reproductive stages will cause irreparable damage to N₂ fixation due to the breakdown of essential leaf proteins [1] and the inability of N₂ fixation to recover.

Material and Methods

- Growth chamber experiment repeated in two trials using Hendricks cultivar (MG 0).
- Moderate drought stress at flowering (R2), early seed-fill (R5), late seed-fill (R6) and a well-watered control treatment.
- Well-watered plants watered to 85% of pot capacity.
- Stressed plants watered daily for 5d to maintain transpiration at 40% of controls [2].
- After the drought period, plants were rewatered and kept wellwatered until maturity.
- Nitrogenase activity was measured weekly throughout the entire plant cycle using the acetylene reduction assay (Fig. 1).
 Data were analyzed using analysis of variance, and means
 - separated using LSD_{q=0.05}.</sub>

Figure 1. Soybean nitrogenase activity was measured with a nondestructive, flow-through system (A). Ethylene was quantified by gas chromatography (B).

Results and Discussion

- \bullet Control plants peaked N_2 fixation at R3-R4 (40 d), maintained high activity during R5 and decreased after R6 (60 d) (Figure 2).
- \bullet Drought stress reduced N_2 fixation to about 40% of the control plants regardless the developmental stage.
- After rewatering, N₂ fixation recovered from drought at R2 and R5 stage and had higher activity than control plants during mid seed-fill (55 d) (Figure 2).
- Drought stress at R5, prolonged high N₂ fixation activity during late seed-fill (66 d) (Figure 2).
- After drought stress at R6 stage, N₂ fixation did not recover and decreased activity compared with control plants (Figure 2).
- Drought stress at R6 stage decreased yield by reducing individual seed mass (Table 1).
- Drought stress at R5 decreased seed number, but compensated seed yield loss by increasing individual seed mass (Table 1).
- Drought stress at R2 decreased plant biomass, but increased harvest index (Table 1) and nitrogen harvest index (Figure 3).

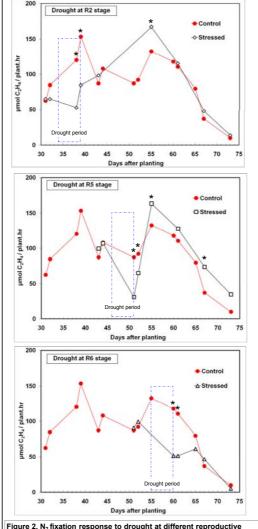
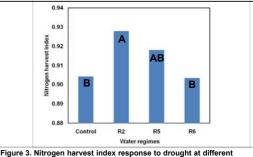



Figure 2. N₂ fixation response to drought at different reproductive stages and N₂ fixation recovering from drought after rewatering. Dates marked with * indicate significant treatment difference (P ≤ 0.05)

Seed yield	н	Biomass	Seed Number	Individual seed mass
g. plant ⁻¹		g.plant ¹	Number seed.plant-1	mg. seed-1
7.6 A	0.51 B	14.9 A	57 AB	133 B
6.7 B	0.57 A	11.8 B	49 BC	132 BC
7.2 AB	0.56 A	12.9 A	46 C	163 A
6.8 B	0.52 B	13.1 A	60 A	116 C
	^{g. plant*1} 7.6 A 6.7 B 7.2 AB	^{g. plant¹} 7.6 A 0.51 B 6.7 B 0.57 A 7.2 AB 0.56 A	g. plant ¹ g. plant ¹ 7.6 A 0.51 B 14.9 A 6.7 B 0.57 A 11.8 B 7.2 AB 0.56 A 12.9 A	g. plant ¹ g. plant ¹ Number seed plant ¹ 7.6 A 0.51 B 14.9 A 57 AB 6.7 B 0.57 A 11.8 B 49 BC 7.2 AB 0.56 A 12.9 A 46 C

Table 1. Seed yield, harvest index, plant biomass, seed number and individual seed mass of plants grown under different water regimes. Numbers followed with different letters are significantly different (P ≤ 0.05).

igure 3. Nitrogen harvest index response to drought at different reproductive stages. Bars containing different letters are significantly different (P ≤ 0.05).

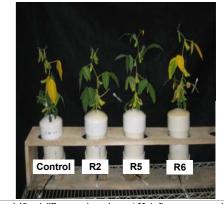


Figure 4. Visual differences in soybean at 66 d after emergence when exposed to drought stress at different developmental stages.

Conclusions

- Soybean plants drought stressed during R2 and R5 were able to recover N₂ fixation activity after rewatering.
- Although N₂ fixation recovered from drought at R2, plant biomass did not recover and had increased NHI.
- After drought stress at R5, N₂ fixation recovered and had prolonged activity through late seed-fill.
- Plants drought stressed at R6 were incapable of recovering N₂ fixation after rewatering, which resulted in early senescence compared with plants stressed at R2 and R5 (Figure 4), supporting our hypothesis.

References

 Sinclair, T. R., and C. T., de Wit. 1976. Analysis of the carbon and nitrogen limitations to soybean yield. Agronomy J. 68:319-324.
Ray, J.D. and T.R., Sinclair 1997. Stomatal closure of maize hybrids in response to drying soil. Crop Sci. 37:803-807.

The United Soybean Board is gratefully acknowledged for their support.

For additional information please contact Adriano Mastrodomenico (amastrod@uark.edu) or Larry Purcell (lpurcell@uark.edu).