Establishing Germination Testing as a Priority in a Genebank

2000

Gary A. Pederson, David Pinnow, and Merrelyn Spinks **USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA**

Abstract

In 2002, the Plant Genetic Resources Conservation Unit (PGRCU), Griffin, GA, established a program to test the germination of plant genetic resources maintained in the on-site collection. Prior to this date, regeneration priorities were based on seed age and quantity of seed available for distribution, with little local evaluation of seed guality. The objective of this paper is to present the development of a germination testing program for a diverse plant genetic resources collection of over 86,500 accessions and 1,500 species, establishment of germination testing methods, and determination of priorities and procedures to effectively characterize seed quality of this collection.

Steps to Establish Germination Testing Program

- Determine the procedures to use to test germination of over 1,500 wild and crop species.
- 2. Determine the number of seeds to test for accession inventories containing few to thousands of seeds.
- Develop priorities to test germination of genebank collection of >86,500 accessions over time.
- Devote personnel, equipment, and supplies to the germination testing program.

Figure 1. Number of accessions tested for germination per year 10000 8000 6000 4000

Germination Procedures Used

Most accessions tested at Griffin are from wild species for which there are no standardized germination testing procedures. The germination procedures utilized for crop and related wild species are taken from the following sources:

1. A total of 99 germination procedures for crop accessions were used directly from AOSA Rules for Testing Seeds.

- A total of 133 germination procedures for crop accessions were used directly from IBPGR Handbook of Seed Technology for Genebanks (Ellis et al., 1985).
- A total of 68 germination procedures for crop and/or wild accessions were adopted from communications with germination staff at National Center for Genetic Resources Preservation (NCGRP), Ft. Collins, CO.
- A total of 962 germination procedures for wild accessions were adopted from previous references listed above along with curator input, other expert input, and additional references including research papers and state seed laboratory communications.

Table 1. Number of seeds used for germination test

No. of Seeds	
in Accession	Teste
>1,000	
500-999	
425-499	
210-424	
<210	rege
	dern

Priorities for Germination Testing

1. Recently-regenerated seeds of accessions 2. Crop accessions with no previous germination test 3. Wild relative accessions with no previous germination test 4. Accessions tested over 5 or more years ago (retesting interval dependent on the species) 5. Inventories with no previous germination test In some cases, accessions were selected for germination testing when the seed sample was being handled for other reasons such as distribution, characterization, or back up sample.

No. of Seeds ed for Germination 100 50 25 10 nerated prior to nination testing

Table 2. Progress on germination testing of genebank collections

	Total No.	Germination Tests	
Crop	Accessions	No.	Percentage
Annual clover	2,139	1,836	85.8
Castor bean	374	353	94.4
Cowpea	8,041	2,230	27.7
Cucurbits	1,396	653	46.8
Eggplant	1,018	937	92.0
Gourds	488	260	53.3
Warm-season grass	6,761	1,477	21.8
Guar	411	406	98.8
Kenaf & Roselle	340	307	90.3
Luffa	164	132	80.5
Misc. legumes	3,074	2,343	76.2
Mung bean	4,203	3,899	92.8
Okra	2,970	1,755	59.1
Peanuts (cultivated)	9,174	3,259	35.5
Peppers	4,699	4,640	98.7
Pearl millet	1,319	1,069	81.0
Sesame	1,216	1,211	99.6
Sorghum	35,208	26,053	74.0
Watermelon	1,898	1,742	91.8
Other spp.	1,785	866	<u> 48.5</u>
Total	86,678	55,428	63.9

References

Association of Official Seed Analysts. 2009. Rules for Testing Seeds. AOSA, Ithaca, NY

Ellis, R.H., T.D. Hong, & E.H. Roberts. 1985. Handbook of Seed Technology for Genebanks. Vol I:

Principles and Methodology. IBPGR, Rome, Italy. Ellis, R.H., T.D. Hong, & E.H. Roberts. 1985. Handbook of Seed Technology for Genebanks. Vol II: **Compendium of Specific Germination Information** and Test Recommendations. IBPGR, Rome, Italy.

Acknowledgments

The authors gratefully acknowledge Phiffie Vankus for conducting almost all the germination tests reported and Lee Ann Chalkley, Sylvia Jones, and Tiffany Fields for processing all the germination test seed orders.