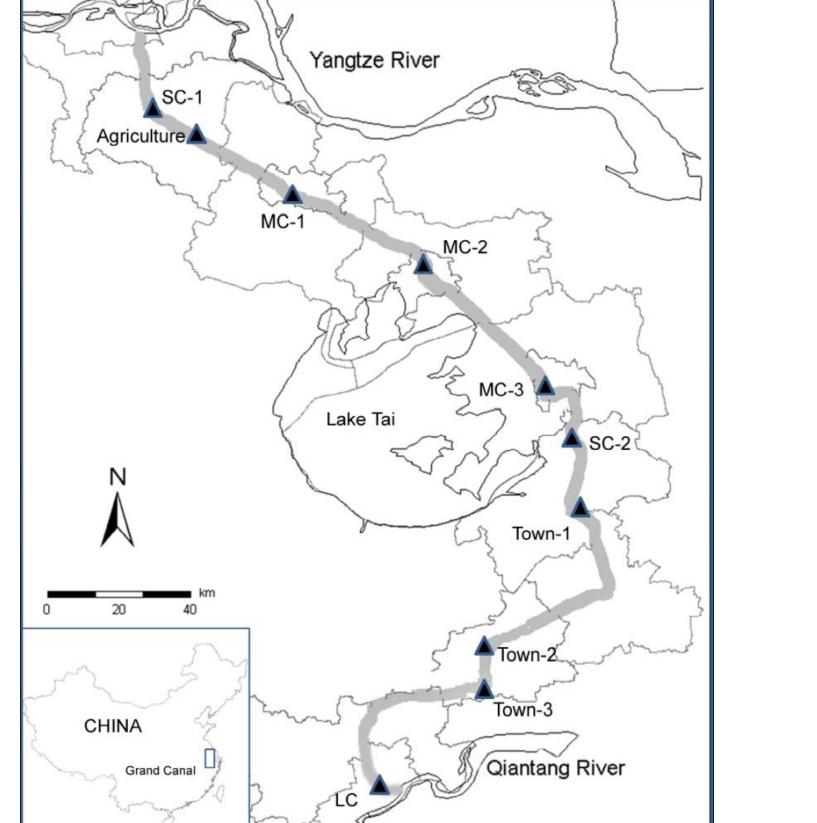


SUMMARY: China has achieved the most rapid urbanization in the world within the past three decades and its urban development is diverse at level. It provides a "vast experiment" to explore the process-based impairment mechanisms of surface water quality by urbanization. Nine towns and cities at various development levels along the historic Grand Canal (approximately 1500 years) in China were selected to reveal direct linkages between surface water quality and extent of urbanization. The selected towns and cities represent a gradient of urbanized population from 4,562 to 2,060,600 in 2007. Surface water quality in the urban sections of the Grand Canal was impaired by both eutrophic agents and metals. Although metals most remained at concentrations permissible to the Chinese National Environmental Standard for Surface Water Quality, the concentration and speciation of metals in the urban Canal could be related to local industrial activities. The level of urbanization, in this study, significantly related to water quality parameters in a descendent order of conductivity > nutrients > metals. This study suggests that significant mitigation strategies are required for the Grand Canal of China for a sustainable urbanization goal.


INTRODUCTION: The rapid urbanization has been resulting in surface water eutrophication and quality-oriented water resource shortage in China. An understanding of evolution of surface water quality with urban development is crucial for local governments to manage and protect surface water resources in an ecological and sustainable way for further urban planning. Case studies on water quality and quantity depletion by urbanization process in China will be useful as a reference for other developing countries with environmental problems caused by irrepressible rapid urbanization.

OBJECTIVES: This study on urbanization processes employed the method of space-fortime substitutions. A set of independent urbanized areas (3 countryside towns, 2 developing cities, and 4 well-developed cities) with the Grand Canal running through represent an urbanization gradient. We hypothesize that 1) the level of urbanization relates to surface water quality in the urban sections of the Canal, and 2) surface water quality might be directly fingerprinted by local economic composition or industry structure.

STUDY AREA: The south section of the Grand Canal, the world longest ancient canal (1,794 km in total, initial construction back to the 5th century BC and completed in the Sui Dynasty (581-618 AD)), runs through the Yangtze River Delta connecting with the Yangtze River in the north and the Qiantang River in the south. The Canal connects multiple cities and is used as a waterway for barge transportation of coal and construction materials between cities. The Canal is maintained by local water networks and also receives discharges from urban and rural catchments.

Urbanization impairs surface water quality: eutrophication and metal stress in the Grand Canal of China

Shen Yu*, Guangbin Yu, Yi Liu, Guilin Li, Sheng Feng Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Site	Agri	Town-1	Town-2	Town-3	SM-1	SM-2	MC-1	MC-2	MC-3	LC	China MEP	US EPA
No. Sample	4	5	4	5	5	7	10	17	16	14	Class III	CCC
pН	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	6.0~9.0	6.5~9.0
Ammonia	ΙΙ	IV	V	V	III	>V	V	V	>V	III	≤1.0	
Total N	>V	>V	>V	>V	>V	>V	>V	>V	>V	>V	≤1.0	
Total P	IV	IV	>V	V	IV	V	V	>V	V	IV	≤ 0.2 (river)	
Copper*	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1000	9.0
Zinc*	II	II	II	II	II	II	II	Ι	II	II	1000	120
Lead*	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	50	2.5
Cadmium*	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	5	0.25
Chromium*	II	II	II	IV	II	II	II	II	II	II	50	11
Mercury*	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.1	0.77
Chloride	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	250	
Nitrate	Р	Р	Р	Р	Р	Р	Р	Р	NP	Р	10	
Iron	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	0.3	
Manganese	Р	NP	NP	NP	Р	NP	Р	NP	NP	Р	0.1	

*Metals were in $\mu g L^{-1}$ and others in mg L⁻¹.

--China Ministry of Environmental Protection (MEP). 2002. The National Environmental Standards for Surface Water Quality (GB3838). --US Environmental Protection Agency (EPA). 2006. The National Recommended Water Quality Criteria for Priority Toxic Pollutants: riterion continuous concentration (CCC).

Canonical redundancy analysis for correlations between surface water quality and urbanization level along the Grand Canal, China.

Standard	lized Variar	nce of the Sur	face Water Q	uality Exp	plained by	Standardized Variance of the Urbanization Level Explained by					
Canonical Variable - Number	Their Own Canonical Variables		Canonical	The Urbanization Level Canonical Variables		Canonical - Variable	Their Own Canonical Variables		Canonical	The Surface Water Quality Canonical Variables	
	Propor- tion	Cumu. Proportion	R-Square	Propor- tion	Cumu. Proportion	Number	Propor- tion	Cumu. Proportion	R-Square	Propor- tion	Cumu. Proportion
1	0.2435	0.2435	0.9951	0.2423	0.2423	1	0.1492	0.1492	0.9951	0.1485	0.1485
2	0.0693	0.3129	0.9584	0.0665	0.3088	2	0.0269	0.1762	0.9584	0.0258	0.1743
3	0.0751	0.388	0.9492	0.0713	0.3801	3	0.1551	0.3313	0.9492	0.1472	0.3216
Squared M	ultiple Cor	relations Betw	ween the Surf	face Water	Quality and	Squared Mu	ltiple Corr	elations Betw	een the Urba	nization Le	evel and the
the First M Canonical Variables of the Urbanization Level						First M Canonical Variables of the Surface Water Quality					
	Μ		1	2	3		Μ		1	2	3
Basic property		pH	0.0021	0.3604	0.5319	_ 1 1		Total	0.0016	0.0087	
	Dissolved oxygen		0.0000	0.0695	0.0889	Population		n-agriculture	0.0783	0.0784	
	Conductivity		0.8776	0.8824	0.8863		Urba	inization rate	0.1565	0.2868	
	Salinity		0.9745	0.9769	0.9786			Total	0.0812	0.0865	
	Chloride		0.8474	0.8493	0.8701			Primary	0.5296	0.5470	
Dissolved nutrient	Organic C		0.0139	0.0191	0.0700	GDP		Secondary	0.0292	0.0333	
	NH_4^+-N		0.3193	0.6203	0.6217			Tertiary	0.1413	0.1472	
	NO ₃ ⁻ -N Total N		0.4372	0.4804	0.5309			Industry Total	0.0219	0.0248	
	Total N Reactive P		0.5586	0.5591	0.5841			Total	0.1030	0.1470	
			0.0857	0.1041	0.1118		• ,	Primary	0.5612	0.5735	
	Total P		0.3054	0.3489	0.3616	GDP per cap	oita	Secondary	0.0618	0.0685	
Dissolved metal	Fe		0.0702	0.0767	0.0935			Tertiary	0.1107	0.2058	
		Mn	0.0381	0.0722	0.5788			Industry	0.0543	0.0584	0.1355
		Al	0.0012	0.0054	0.0138						
		Cu	0.1029	0.2518	0.2518						
		Pb	0.1243	0.1245	0.3580						
		Zn	0.0037	0.0278	0.0389						
		Cd	0.0179	0.0254	0.0974						
		Cr	0.0092	0.1593	0.3702						
	Hg		0.0577	0.1626	0.1632						

RESULTS AND DISCUSSION:

Surface water quality in the investigated urban sections of the Canal is classified at the Class V or above for TN and the Class IV or above for TP, according to the Chinese Standards. Both TN (5.02 ± 1.57 mg N L⁻¹, mean \pm SD) and TP (0.38 ± 0.15 mg P L⁻¹) in the investigated canal sections were much greater than in some urban streams in the USA (Tufford et al., 2003: Brett et al., 2005) and in China (Li et al., 2009). The N loadings in the urban sections had lower $NO_3^{-}N$ in proportion than in the agriculture section, ratio of $NO_3^{-}N$ to $NH_4^{+}N$ ranging from 0.76 (SC-2) to 5.68 (SC-1) in contrast to 8.06 of the agriculture section, in an agreement with Groffman et al. (2004).

The investigated urban sections of the Canal were entirely eutrophic based on TP (the threshold level at 0.075 mg P L⁻¹) and TN (the threshold level at 1.5 mg P L⁻¹) by the classification of trophic states for freshwater streams (Dodds et al., 1998).

Urban-oriented metals, Cu, Zn, Pb, and Cd, in surface water of urban sections of the Canal met the Class II of the Chinese Standards. The urban-oriented metal concentrations of the Canal were comparable with the River Tame in Birmingham, UK (Shepherd et al., 2006) and rivers in Northern Greece (Simeonov et al., 2003), and greater than the Yeongsan River, Korea (Kang et al., 2009), and much lower than the Guadiamar River in Spain (Alonso et al., 2004).

Aquatic communities might be impaired by urban -oriented metals in some urban sections of the Grand Canal classified by the criterion continuous concentration (CCC) for priority toxic metals (US EPA, 2006). For instance, the Town-3 canal might be impaired by Cr⁶⁺; SC-2 canal might be affected by Cu; and MC-3 and SC-2 canals might be deteriorated by Hg.

Linking surface water quality in the Grand Canal to the urbanization level The origin, speciation, and concentration of pollutants in surface waters correspond to local economic structure or industrial structure which drives material metabolisms in urban areas and determines waste constituents, such as the excess Cr from traditional tannery in Town-3, high Cu from recycling industry in SC-2, and detectable Hg from coal power plants in MC-3 and SC-2.

The GDP and per capita GDP from primary industry showed considerable correlation to surface water quality change while population urbanization rate, the GDP and capita GDP from tertiary industry slightly correlated to surface water quality according to the canonical analysis. Both primary industry and tertiary industry are suspectable to release nutrients to urban catchments altering surface water trophic status. Overall, heavy metals were slightly impacted surface water quality in the Canal by urbanization in comparison with nutrients.

Urban Wetland **Ecology & Environment**

Eutrophication is the primary impairment in urban sections of the Grand Canal

```
Metals in urban sections of the Canal related to local industry activity
```