two-year potato rotations

Emily Snowdon, Bernie Zebarth, David Burton, Jack Trevors and Claudia Goyer

Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, PO Box 20280, Fredericton, NB, E3B 4Z7, Nova Scotia Agricultural College, 50 Pictou Road Truro, NS, B2N 5E3

Introduction

 Global GHG emissions have increased by 70% from 1970 to 2007 (Rogner et al. 2007)

• N₂O is important because it has a global warming potential 296 times greater than CO_2 (IPCC 2007)

• 87% of N₂O emissions in Canada result from agricultural activities (Environment Canada 2004)

 In humid regions, N₂O is produced primarily by denitrification according to the following reaction: $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$

• There is limited information available on the effect of crop rotation on the controlling factors of denitrification and subsequently on N₂O emissions

Objective

• Determine the effect of the preceding crop on N_2O emissions in potato production in two-year potato rotations

Materials & Methods

Table 1: Experimental treatments

Treatment	2007	2008
1	Barley	Potato 193N
2	Italian ryegrass	Potato 193N
3	Corn	Potato 193N
4	Potato	Potato 193N
5	Soybean	Potato 193N
6	Canola	Potato 193N
7	Red Clover	Potato 193N
8	Barley	Potato 0N
9	Red Clover	Potato 0N

 Weekly measurements of N₂O flux were taken in the hill and furrow using nonflow through, non-steady state, vented and insulated chambers with a total volume of 1.6L

 Hill locations in plots with preceding crops of annual ryegrass and red clover had cumulative N_2O emissions 2.7 times higher than all other preceding crops. There was no treatment effect in the furrow locations.

• The increased cumulative emissions from the potato hills compared with the furrow may be attributed to increased soil available nitrate due to mineral N fertilizer placement at planting. Soil in the hill is less compact when compared to the furrow location, which allows for increased gas diffusivity and therefore increased N₂O emissions.

• N₂O emissions were, on average, 3.8 times higher from plots with preceding red clover when compared to plots with preceding barley crop

• Fertilized plots emitted 1.6 times more N₂O when compared to unfertilized plots

Conclusions

 Preceding legume and non-legume forages produced the highest N₂O emissions which may reflect increased carbon inputs from the preceding forage crops

 Choice of rotation crop and fertilizer N management both have a significant effect on N₂O management in potato production

References

Rogner, H.-H., Zhou, D., Bradley P., et al. (2007). Introduction. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz et al. (eds)], Cambridge University Press, Cambridge, UK. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. et al. (eds.)]. Cambridge University Press, Cambridge, UK. Environment Canada. 2004. Canada's Greenhouse Gas Inventory 1990-2002. Greenhouse Gas Division, Environment Canada, August 2004.

Acknowledgements

Funding was provided by Agriculture and Agri-Food Canada and NSERC. Technical assistance was provided by Ginette Decker, Karen Terry, Mona Levesque, and Sheldon Hann.

