

Research to Nourish Africa

Genetic Gains from Selection for High Grain Yield and Striga Resistance in Early Maturing Maize Cultivars of Three Breeding Eras under Striga Infested and Striga-free Environments

B. Badu-Apraku^{1*}, Yallou Chabi² and M. Oyekunle¹

¹ International Institute of Tropical Agriculture (IITA), IITA (UK) Ltd, Carolyn House, 26 Dingwall Road, CROYDON CR9 3EE, UK. ²INRAB, Cotonou, Benin Republic. *Email:b.badu-apraku@cgiar.org

Introduction

The Savannas of West and Central Africa (WCA) have the potential to produce substantial market surpluses of maize for use in other agro-ecological zones and for export. However, maize production and productivity in the savannas is severly constrained by Striga hemonthica parasitism, drought and poor soil fertility, especially low soil nitrogen. Striga infestation can cause total crop loss and many maize farmers have been compelled to abandon their farmlands due to Striga which has defied control measures including hand pulling, crop rotation, trap and catch cropping, high rate of fertilizer application, fallow and seed treatment. Use of host plant resistance is the most economically feasible and sustainable approach for reducing the effects of the parasitic weed (Badu-Apraku and Akinwale, 2011). In recognition of the enormous potential of maize as a food and industrial crop, IITA established research programs to improve its productivity. Using inbreeding, hybridization and recurrent selection methods, a number of drought and low soil nitrogen tolerant and/or Striga resistant/tolerant early maturing cultivars have been developed for WCA during three breeding eras, 1988-2000, 2001–2006 and 2007–2010. Available maize varieties have contributed significantly to increased maize production and improved food security in the sub region. Despite the significant progress made, no studies have been conducted to document the genetic gains from selection for grain yield and Striga resistance in early maturing cultivars over the years. The objective of the present study was to assess the gains in improvement in grain yield of the cultivars developed in the IITA maize breeding program during the last three decades under Striga-infested and non-infested environments.

Table 1. Grain yield and other agronomic traits of maize cultivars of three breeding eras under Striga-infested and Striga-free conditions in Nigeria and Benin, 2010

Trait	Era	Number of	Striga infested	Striga free	Trait	genetic gain		2	h
		cultivar				Striga-infested env	vironments	a	D
Grain yield, kg ha ⁻¹	1988-2000	15	2537 ± 74.6	3646 ± 98.3	Grain vield, ka ha-1	1 93	0.262	2145 40	41 380
	2001-2006	16	2697 ± 73.9	3770 ± 93.2	Dava ta anthasia	0.04	0.202	21 4 0.40	0 0 0 0 0
Days to silking	2007-2010	19	3122 ± 03.1	4221 ± 81.3	Days to anthesis	0.04	0.037	53.20	0.022
	1966-2000	10	50 ± 0.2	55 ± 0.1	Days to silking	0.01	0.001	56.11	0.004
	2001-2000	10	50 ± 0.1 56 + 0.1	55 ± 0.1	ASI	-0.64	0.066	2.85	-0.018
Days to anthesis	1988-2000	15	50 ± 0.1 54 + 0.2	53 ± 0.1 54 + 0.1	Plant height, cm				
	2001-2006	16	54 ± 0.2	54 ± 0.1	Ear height, cm	0.21	0.098	140.49	0.289
	2007-2010	19	54 ± 0.1	54 ± 0.1	Striga rating (8WAP)	-0.85	0.284	3.75	-0.032
Anthesis-silking interval	1988-2000	15	2.5 ± 0.09	1.9 ± 0.06	Striga rating (10 WAP)	-0.80	0 336	5 07	-0 040
	2001-2006	16	2.6 ± 0.08	1.9 ± 0.05	Striga count ($8 W/AP$)	-0.63	0.032	22.28	_0 1/1
	2007-2010	19	2.4 ± 0.06	1.8 ± 0.05	Striga count (0 WAI)	-0.03	0.032	22.20	-0.1+1
Plant height, cm	1988-2000	15	144 ± 1.0	159 ± 1.0	Striga count (TU WAP)	-0.57	0.035	30.83	-0.176
	2001-2006	16	148 ± 0.9	164 ± 0.9	Ear aspect	-0.65	0.229	4.64	-0.030
	2007-2010	19	149 ± 0.9	165 ± 0.8	Stalk lodging, %	-155.62	0.069	0.07	-0.108
Striga rating at 8WAP	1988-2000	15	3.3 ± 0.08	-	EPP	0.78	0.334	0.73	0.006
	2001-2006	16	3.2 ± 0.07	-		Striga-free enviro	onments		
	2007-2010	19	2.9 ± 0.06	-	Grain vield ka ha-1	1 00	0.216	3373 50	33 901
Striga rating at 10WAP	1988-2000	15	4.6 ± 0.08	-	Dave to anthosis	0.06	0.210	52.00	0.024
	2001-2006	16	4.5 ± 0.07	-	Days to anthesis	0.00	0.100	52.99	0.034
Other a contration OVA/AD	2007-2010	19	4.1 ± 0.06	-	Days to silking	0.05	0.053	54.98	0.025
Striga count at 8WAP	1988-2000	15	19 ± 1.2	-	ASI	-0.44	0.044	1.99	-0.009
	2001-2006	10	20 ± 1.2	-	Plant height, cm	0.20	0.123	157.84	0.316
Strige count at $10MAP$	1088-2000	19 15	20 ± 1.2 27 ± 1.2	-	Ear height, cm	0.24	0.082	72.03	0.170
Singa count at TOWAP	2001-2006	16	27 ± 1.2 29 + 1 3	_	Plant aspect	-0.17	0.009	3.10	-0.005
	2007-2010	19	27 + 1.3	_	Husk cover	_0.28	0 104	2 01	
Plant aspect	1988-2000	15	-	3.0 ± 0.08		-0.20	0.104	2.31	-0.000
	2001-2006	16	-	2.8 ± 0.07	Earaspect	-0.07	0.320	3.70	-0.025
	2007-2010	19	-	2.8 ± 0.10	Stalk lodging, %	-0.64	0.006	2.81	-0.018
Stalk lodging, %	1988-2000	15	9 ± 0.8	2 ± 0.2	EPP	0.22	0.132	0.90	0.002
	2001-2006	16	9 ± 0.8	3 ± 0.3					
	2007-2010	19	8 ± 0.7	2 ± 0.2					
Ear aspect	1988-2000	15	4.2 ± 0.1	3.4 ± 0.07					
-	2001-2006	16	4.1 ± 0.1	3.2 ± 0.07					
	2007-2010	19	3.8 ± 0.1	3.0 ± 0.06					

Table 2. Genetic gain and regression coefficients (b) of grain yield and other agronomic traits of maize cultivars under Striga-infested and Striga-free conditions.

anu 2011.						Relative			
Trait	Era	Number of	Striga infested	Striga free	Troit	genetic gain	D ²	0	h
		cultivar			Trait	(% per year)	 ironmonto	a	U
Grain yield, kg ha-1	1988-2000	15	2537 ± 74.6	3646 ± 98.3	One in a del de la 1			0445.40	44.000
	2001-2006	16	2697 ± 73.9	3770 ± 93.2	Grain yield, kg ha-	1.93	0.262	2145.40	41.389
	2007-2010	19	3122 ± 65.1	4227 ± 87.5	Days to anthesis	0.04	0.037	53.26	0.022
Days to silking	1988-2000	15	56 ± 0.2	55 ± 0.1	Days to silking	0.01	0.001	56.11	0.004
	2001-2006	16	56 ± 0.1	55 ± 0.1	ASI	-0.64	0.066	2.85	-0.018
	2007-2010	19	56 ± 0.1	55 ± 0.1	Plant height cm				
Days to anthesis	1988-2000	15	54 ± 0.2	54 ± 0.1	Far height cm	0.21	0 098	140 49	0 289
	2001-2006	16	54 ± 0.1	54 ± 0.1	Strigg rating $(9)/(AD)$	0.21	0.000	2 75	0.200
	2007-2010	19	54 ± 0.1	54 ± 0.1	Singa rating (ovvAP)	CO.U-	0.204	3.75	-0.032
Anthesis-silking interval	1988-2000	15	2.5 ± 0.09	1.9 ± 0.00	Striga rating (10 WAP)	-0.80	0.336	5.07	-0.040
	2001-2000	10	2.0 ± 0.00	1.9 ± 0.05	Striga count (8 WAP)	-0.63	0.032	22.28	-0.141
Plant height, cm	1088 2000	19	2.4 ± 0.00 $1/1 \pm 1.0$	1.0 ± 0.00	Striga count (10 WAP)	-0.57	0.035	30.83	-0.176
	2001-2006	16	144 ± 1.0 148 + 0.0	164 ± 0.9	Ear aspect	-0.65	0.229	4.64	-0.030
	2007-2010	19	149 ± 0.9	165 ± 0.3	Stalk lodging %	-155 62	0 069	0.07	-0 108
Striga rating at 8WAP	1988-2000	15	33 ± 0.08	-		0.78	0.334	0.73	0.006
	2001-2006	16	3.2 ± 0.07	-			0.004	0.75	0.000
	2007-2010	19	2.9 ± 0.06	-		Striga-free enviro	onments		
Striga rating at 10WAP	1988-2000	15	4.6 ± 0.08	-	Grain yield, kg ha-1	1.00	0.216	3373.50	33.901
	2001-2006	16	4.5 ± 0.07	-	Days to anthesis	0.06	0.106	52.99	0.034
	2007-2010	19	4.1 ± 0.06	-	Days to silking	0.05	0.053	54.98	0.025
Striga count at 8WAP	1988-2000	15	19 ± 1.2	-	ASI	-0.44	0.044	1.99	-0.009
	2001-2006	16	20 ± 1.2	-	Plant height cm	0.20	0 123	157 84	0 316
	2007-2010	19	20 ± 1.2	-	For boight, on	0.20	0.120		0.010
Striga count at 10WAP	1988-2000	15	27 ± 1.2	-	Ear neight, chí	0.24	0.082	72.03	0.170
	2001-2006	16	29 ± 1.3	-	Plant aspect	-0.17	0.009	3.10	-0.005
	2007-2010	19	27 ± 1.3	-	Husk cover	-0.28	0.104	2.91	-0.008
Plant aspect	1988-2000	15	-	3.0 ± 0.08	Ear aspect	-0.67	0.326	3.76	-0.025
	2001-2006	16	-	2.8 ± 0.07	Stalk lodging, %	-0.64	0.006	2.81	-0.018
Stalk lodging, %	2007-2010	19	-	2.8 ± 0.10	EPP	0.22	0 132	0.90	0.002
	1988-2000	15	9 ± 0.8	2 ± 0.2		0.22	0.102	0.30	0.002
	2007-2006	10	9 ± U.ð	3 ± U.3					
	2007-2010	19	ŏ±U./ ₄○□○4						
Ear aspect	1900-2000	10 16	4.∠ ± U. I ⊿ 1 ⊥ 0 1	J.4 ± U.U/ 3 2 ± 0 07					
	2001-2000	10	4.I I U.I	3.2 ± 0.07					

Materials and Methods

Fifty early-maturing cultivars were evaluated in 2010 and 2011 for grain yield and tolerance or resistance to Striga under artificial infestation with S. hermonthica at two locations each in the Republic of Benin and Nigeria. The evaluations in Nigeria were carried out at Mokwa and Abuja while Ina and Angaradebou were used in the Republic of Benin. Two rows of each entry were infested with seeds of S. hermonthica while the other two rows were Striga-free. A 10 x 5 lattice with three replications was used in all evaluations. The Striga infestation method developed by IITA Maize Program was used (Kim 1991). Data were recorded on both Striga-infested and Striga-free plots for grain yield and other important agronomic traits. In addition, host plant damage syndrome rating and number of emerged Striga plants were made at 8 and 10 weeks after planting (WAP) in the Striga-infested plots. Striga damage syndrome was scored per plot on a scale of 1–9 where 1= no damage, indicating normal plant growth and high resistance, and 9=complete collapse or death of the maize plant, i.e. highly susceptible (Kim 1991).

 0.9 ± 0.01

 0.9 ± 0.01

 0.9 ± 0.01

0.8 ± 0.01

 0.8 ± 0.01

 0.9 ± 0.01

1988-2000

2001-2006

2007-2010

15

16

19

Ears per plant

Analysis of variance was conducted for grain yield and other traits separately for the Striga-infested and Striga-free environments followed by a combined analysis across the two research environments. The yield data were also subjected to genotype main effect plus genotype × environment interaction (GGE) biplot analysis to obtain information on the superior cultivars under stress and non-stress environments and to investigate the stability of cultivars. The relationship between measured traits of maize cultivars and year of breeding (expressed as number of years since 1988) under Striga-infested and Striga-free conditions were determined using regression analysis.

Results and Discussion

Results revealed that E, Genotype (Era), Era, E × Genotype (Era), and E × Era interactions mean squares were significant for grain yield under both Striga-infested and Striga-free environments except E × Genotype (Era) and E × Era interactions when *Striga*-free (Table not presented). This suggested that there were large differences in environmental factors such as soil type, temperature, amount of rainfall and disease pressure at both test sites in Nigeria and Benin (Badu-Apraku et al., 2008). Under Striga infestation, grain yield ranged from 2537 kg ha⁻¹ for cultivars bred during 1988–2000 to 3122 kg ha⁻¹ for those developed during 2007–2010 (Table 1) with a corresponding genetic gain of 1.93% per year (Table 2). When Striga-free, grain yield ranged from 3646 kg ha⁻¹ for cultivars bred during 1988–2000 to 4227 kg ha⁻¹ for those developed during 2007–2010 (Table 1) with annual genetic gain of 1.0% (Table 2). The average rate of increase in grain yield was 41 kg ha⁻¹ per year when Strigainfested and 34 kg ha⁻¹ per year when Striga-free (Table 2). The increase in grain yield under Striga infestation was associated with significant decrease in the Striga damage rating and the number of emerged Striga plants at 8 and 10 WAP, improvement in ear aspect and increase in the number of ears per plant from old to modern era cultivars (Table 1). The Striga damage rating decreased from 3.3 to 2.9 for the old to modern era cultivars (Tables 1) with a genetic gain of -0.85% at 8WAP (Table 2). At 10WAP, the damage rating decreased from 4.6 to 4.1 for the old and modern era cultivars with genetic gain of -0.80%. For the number of emerged Striga plants, annual genetic gain of -0.63% for 8 WAP and -0.57% for 10 WAP were obtained for cultivars of the three breeding eras. The increase in annual genetic gains for the cultivars was 0.70% for EPP and -0.65% for ear aspect.

22	EV DT-W 2008 STR	2008
23	2008 DTMA-W STR	2008
24	2008 DTMA-Y STR	2008
25	2009 TZE-W Pop DT STR	2009
26	2009 TZE-Y Pop DT STR	2009
27	2009 DTE-W STR Syn	2009
28	2009 DTE-Y STR Syn	2009
29	TZE-W DT C2 STR	2010
30	TZE-Y DT C2 STR	2010
31	TZE-W DT C1 STR	2010
32	TZE-Y DT C1 STR	2010
33	DTE-Y STR Syn C1	2010
34	DTE-W STR Syn C1	2010
35	Syn DTE STR-Y	2010
36	Syn DTE STR-W	2010
37	DT-Y STR Synthetic	2010
38	DT-W STR Synthetic	2010
39	98 Syn WEC STR C0	1998
40	2000 Syn WEC	2000
41	BG 97 TZE COMP3 x 4	1997
42	TZE-Y Pop DT STR C2	2002
43	TZE-W Pop DT STR C0	2001
44	TZE-Y Pop DT STR C0	2001
45	2004 TZE-W Pop DT STR C4	2004
46	2004 TZE-Y Pop DT STR C4	2004
47	TZE-W Pop DT STR C3	2003
48	TZE-Y Pop DT STR C3	2003
49	99 Syn WEC	1999
50	Tillering Early DT	2007

Figure 1. The 'mean vs. stability' view of the GGE biplot based on a genotype x environment yield data for 50 early-maturing maize cultivars under Striga infestation at eight environments, 2010 and 2011.

Conclusions

Substantial progress has been made in breeding for high yielding, Striga resistant / tolerant cultivars during the past three decades. The outstanding *Striga* resistant cultivars, DTE-Y STR Syn C₁, EV DT-Y 2000 STR, and 2009 DTE-Y STR Syn should be extensively tested in WCA and promoted for adoption by farmers to contribute to food security in the sub region.

Acknowledgments

The financial support of the Drought Tolerant Maize for Africa (DTMA) Project and the International Institute of Tropical Agriculture (IITA) for this study is gratefully acknowledged. Special thanks are also due to the staff of the IITA Maize Program in Ibadan, Nigeria, for technical assistance.

The GGE biplot analysis demonstrated that cultivars DTE-Y STR Syn C₁, EV DT-Y 2000 STR, and 2009 DTE-Y STR Syn were the highest yielding and the most stable across Striga-infested environments (Fig.1).

References

Kim, S.K., 1991. Breeding maize for Striga tolerance and the development of a field infestation technique, in: Kim, S.K (Ed.), Combating Striga in Africa. Proceedings of the International Workshop organized by IITA, ICRISAT, and IDRC. 22–24 August 1988. IITA, Ibadan, Nigeria, pp. 96–108. Badu-Apraku, B., Akinwale RO, 2011. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments. Field Crops Res. 121: 186–194. Yan, W., 2001. GGE Biplot- A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J. 93: 1111–1118.

