

ıng.

Influence of irrigation nitrate crediting on cotton production and residual soil nitrate in the Texas Rolling Plains Danielle Dittrich¹, Paul DeLaune², Frank Hons¹

¹Soil and Crop Sciences, Texas A&M University, College Station, TX, ²Texas A&M AgriLife Research, Vernon, TX

Introduction

Groundwater nitrate contamination is a major water quality concern in the Texas Rolling Plains. Leaching of nitrate-nitrogen (NO₃-N) is the primary route by which groundwater is contaminated (Spalding et al., 2001). While leaching may be minimal in properly managed, fine-textured soils, it is a problem with most irrigated sandy soils (Hergert, 1986). In the Rolling Plains, NO₃-N in irrigation water is a plant-available source that can be credited towards crop nitrogen (N) requirements. Adjusting fertilizer N rates for irrigation NO₃-N facilitates greater precision in N management, substantially reducing soil NO₃-N available for leach-

Treatment	Description
Control	Unfertilized
Credited N	N rate based soil & water testing
Credited N + P	N rate based soil & water testing plus P
Uncredited N	N rate based on soil testing only
Uncredited N + P	N rate based soil testing plus P

			Applied					
		Need	Credite	ed Fertilize	r Irrigatio	n Uptak		
		kg N ha ⁻¹						
LF	EPA	168	84	84	39	128		
2010 SD	I		84	84	55	170		
LF	EPA		79	90	170	149		
2011 SD	I		96	78	170	89		
LF	EPA	\bigvee	121	48	75	TBA		
2012 SD	I		168	0	75	TBA		

Figure 1. Study site location and groundwater NO₃-N in Texas High Plains and Rolling Plains

- N application as 10-34-0 and 28-0-0 was based on soil NO₃-N to 61 cm
- Irrigation NO₃-N crediting was 62 kg NO₃-N ha⁻¹ (represents NO₃-N in 30.5 cm irrigation water at 20 mg NO₃-N L⁻¹)

Data analyzed by ANOVA in SAS

Results

Figure 3. 2010 - 2012 Applied N in Credited-N treatments. Need = cotton N need for 1615 kg lint ha⁻¹; Credited = NO_3 -N credited from irrigation and soil; Fertilizer = N rate after applying N-credits. Uptake = total cotton N uptake

Effects of irrigation nitrate crediting

- Lint yield was not affected in either irrigation system in 2010 or 2011
- N uptake was negatively affected only in LESA 2010 in Credited-N treatment
- Reduction in soil NO₃-N was significant, though relatively small, in SDI 2010. In SDI 2011, residual soil NO₃-N was reduced by 15%, yet differences were not significant at the 5% probability level
- In all 5 treatments in SDI 2012, preplant soil nitrate met 100% of crop N demand

Conclusions

• Cotton N requirement in SDI 2012 was fully satisfied by soil NO₃-N accumulated over the 2011 season. Even though

Objectives

Determine effects of irrigation NO₃-N crediting on cotton N fertilizer requirement, cotton lint yield, and residual soil NO₃-N.

Materials & Methods

Figure 2. Lint yield (top) and residual soil NO₃-N to 91 cm (bottom). Means with same letter were not different (lint yield: p < .0001; residual NO₃-N: p < .05). soli NO_3 -N accumulated over the 2011 season. Even though soil N loss was very high in LESA 2011, enough NO_3 -N remained in soil to meet 30 to 47% of crop N requirement the following season.

- Crediting of irrigation and soil NO₃-N to 61 cm led to savings in fertilizer costs of \$85 to \$172 ha⁻¹ yr⁻¹ in LESA and \$85 to \$224 ha⁻¹ yr⁻¹ in SDI.
- Overall, irrigation nitrate crediting did not influence lint yield.
- Patterns of estimated N loss indicate the impact of soil texture on NO₃-N movement. From a water quality standpoint, nitrate crediting may have the greatest impact in systems with coarse-textured soils.

References

Bronson K.F., et al. 2006. Site-specific irrigation and nitrogen management for cotton production in the Southern High Plains. Agron J. 98(1):212-219.

Hergert, G.W. 1986. Nitrate leaching through sandy soil as affected by sprinkler irrigation management. J. Environ. Qual. 15(3):272-278.

Experimental design

In 2011, drought conditions led to high irrigation input, resulting in 170 kg NO₃-N ha⁻¹ applied through irrigation alone in LESA and SDI. Residual soil NO₃-N increased by a factor of three or more from 2010 to 2011.

- Randomized complete block design within subsurface drip (SDI) and center-pivot (LESA) irrigation systems
 Five fertilizer treatments, replicated 4 times
 Abilene clay loam in SDI; Grandfield fine sandy loam in LESA
- 8-row x 15 m plots

Even with high input of NO_3 -N, irrigation nitrate crediting led to reductions in soil nitrate accumulation.

Hillin, C.K., and P.F. Hudak. 2003. Nitrate contamination in the Seymour Aquifer, north-central Texas, USA. Bull. Environ. Contam. Toxicol. 70(4):674-679.

Spalding, R.F., et al. 2001. Controlling nitrate leaching in irrigated agriculture. J. Environ. Qual. 30:1184-1194.

