Do maize-year N rate and cover crops affect N₂O emissions from soybean?

David C Mitchell, Michael J Castellano, John E Sawyer, Jose L Pantoja, Fernando Miguez Agronomy Department, Iowa State University, Ames, IA

Introduction

Nitrogen fertilizer rate is a major factor controlling N_2O emissions from agricultural land. However, few studies have measured the effect of maize-year N rate on N_2O emissions from the following soybean year in a 2-yr maize-soybean rotation.

Fig. 1. Soil NO_3 concentrations (top 30 cm) at three N fertilizer rates after maize harvest and cumulative annual precipitation in 2010 and 2011.

Fig. 2. Cumulative N2O emissions from soybean soils by N rate for previous (maize) year with and without winter rye as a cover crop. Error bars are standard error of means of 4 (2011) or 3 (2012) replicates.

Results & Discussion

Annual precipitation was greater in 2010 than 2011, and soil profile NO_3

Fig. 3. Mean soil NO₃ concentrations (top 10 cm) during study period in 2011 and 2012. Error bars are standard error of means of 4 (2011) or 3 (2012) replicates.

Methods

concentrations following maize harvest were consistently greater in 2011 (Fig. 1). Cumulative precipitation during the study period was greater in 2011 (565 mm) than 2012 (481 mm).

Surface (top 10 cm) soil NO₃ concentrations did not differ between treatments, but were greater in 2012 than 2011. However, N₂O emissions did not differ between 2011 and 2012. Nitrous oxide emissions did not differ between maize-year N rate and cover crop treatments in the two years of measurement.

Nitrogen fertilizer rate can greatly influence N_2O emissions from maize and other crops receiving N fertilizer. However, these results indicate that maize-year N rate may not affect N_2O emissions in the following soybean year. Decreased precipitation in 2012 did not correspond to decreased N_2O emissions, possibly because NO_3 availability was greater in 2012.

We measured soil surface N_2O emissions from no-till soybean following maize fertilized at three N rates (0, 135, and 225 kg N ha⁻¹) with and without

This work was funded by USDA-NIFA Award No.: 2011-68002-30190 <u>www.sustainablecorn.org</u>

The field project is supported in part by the lowa

Stewardship, Division of Soil Conservation,

CROPS, CLIMATE, CULTURE AND CHANGE

