

Zeta potential and point of zero charge of clay fraction as affected by vinasse and phosphorus*

Bruno Teixeira Ribeiro¹, José Maria de Lima², Nilton Curi², Geraldo César de Oliveira² and Pedro Luiz Terra Lima²

¹ Agricultural Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais State, Brazil. ² Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brasil. Email: btribeiro@iciag.ufu.br; jmlima@dcs.ufla.br; niltcuri@dcs.ufla.br; geraldooliveira@dcs.ufla.br; pedroterralima@yahoo.com.br

* Part of the doctorate thesis of the first author

developed at the solid-liquid interface (Tan, 1993)

- Point of zero charge (PZC): pH at which the surface charge is electrically neutral, for example, zeta potential = 0 (Tan. 1993)

OBJECTIVES

The objective of this work was to evaluate the effect of vinasse, P sorption and the interaction vinasse-phosphorus on zeta potential and point of zero charge (PZC) of clayfraction samples from two soils with different iron and aluminum contents (Red Latosol and Gleysol)

MATERIAL AND METHODS

- Clay fraction of Dystroferric Red Latosol (LVdf) and Gleysol (referenced as gibbsite)

	SiO21/	Al ₂ O ₃ ^{1/}	Fe ₂ O ₃ ^{1/}	Ki	Kr	TOC			
	g kg-1g								
LVdf	284	256	177	1,88	1,31	6,0			
Gibbsite	86	489	9,1	0,30	0,30	1,5			

¹ After acid sulfuric digestion (Embrapa, 1997); Ki: molecular ratio (SiO₂/Al₂O₃); Kr. molecular ratio (SiO₂/Al₂O₃); TOC: total organic carbon.

- Vinasse from sugarcane spirit production

carbon

pН	CE	I	00	Ρ	K	Са	Mg	S	Na	Cu	Mn	Zn	Fe
g L ⁻¹ mg L ⁻¹ mg L ⁻¹													
3,5	7,5	0,1	9,6	0,0	2,1	0,2	0,2	0,0	0,7	7,4	1,5	0,0	18,3
EC: electrical conductivity (dS m ⁻¹); I: ionic strength (mol L ⁻¹); I = CE.0,0127; OC: organic													

RESULTS

past (Günkel et al., 2007);

Extracted and adapted from www.unica.com.br

CONCLUSIONS

✓ The vinasse influenced the zeta potential of clay fraction of both soils. In the Red Latosol, the PZC was reduced from 7.5 to 5.0, and the particles became more negatively charged. For gibbsite, the PZC was not changed, but the positive charges were significantly reduced. The P sorption increased negative charges to the soil particles and reduced the PZC. These effects were more pronounced when the clay fraction was previously treated with vinasse

ACKNOWLEDGMENTS

The authors show their appreciation to Fapemig, CNPq and Federal University of Uberlandia, Brazil, for the financial support to this research.

Figure 2. Zeta potential and point of zero charge (PZC) of Dystroferric Red Latosol and Gleysol (gibbsite) as affected by vinasse and phosphorus sorption. Erros bars indicate the standard deviation (n=3)

REFERENCES

APPEL, C.; MA, L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal Environmental Quality. v. 31, p. 581-589, 2002. CHOROM, M.; RENGASAMY, P. Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, v. 46, p.657-665, 1995. CLAUSEN, L., FABRICIUS, I; MADSEN, L. Adsorption of pesticides onto quartz, calcite, kaolinite, and o-alumina. Journal Environmental Quality, v. 30, p. 468-657, 2001. EMBRAPA. Manual de Métodos de Análises de Solo. 2 ed. Rio de Janeiro: Embrapa: Centro Nacional de Pesquisa de Sole. 1907 210.

Solos. 1997. 712 p. GILMAN, G. P. Influence of organic matter and phosphate content on the point of zero charge of variable charge components in oxidic solis. Australian Journal of Soil Research, v. 23, p. 643-646, 1985. GUNKEL, G. KOSMOL, J. SOBRAL, M. ROHN, H. MONTENEGRO, S.; AURELIANO, J. Sugar cane industry as a source of water pollution – case study on the situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollution, v. 180, p. 261-and

209, 2007.
209, 2007.
SUMNER, M.E.; STEWART, B.A. (Eds.). Soil crusting:
chemical and physical processes. Boca Rator: Lewis Publishers, 1992. p.1-31.
TAN, K.H. Principles of soil chemistry. 2ed. New York: Marcel Dekker, 1993. 362p.3