

Myung-Sook Kim^{1*}, Yong-Seon Zhang¹, Yoo-Hak Kim¹, Seong-Su Kang¹, Yong-hee Moon¹, Hae-Rae Cho¹, Byung-Keun Hyun¹, Jae E. Yang²

¹National Academy of Agricultural Science, RDA, Suwon, Republic of Korea, ²Department of Biological Environment, Kangwon University

accumulation at on-farm fields (right).

✤ It is necessary to study the phosphorus accumulated in plastic film house soils to develop effective remediation strategies to minimize phosphorus accumulation in agricultural lands and environmental pollution,

Objective

The objective of this study was to characterize the complex forms of phosphorus accumulated in plastic film house soils

Materials and methods

Soils sampling from on-farm fields applied successively with livestock manures for 3 ~10 years.

- Fig. Phosphorus fractionation of soils treated with livestock manures.
- \succ Inorganic P was dominant as 83~88% of T-P in three types of soils.
- \succ T-P content of diary manure treatment was higher than other treatments because the input of diary manure was high comparing other manures.
- > Fe bound P, AI bound P and Ca bound P was the highest in soils applied pig manure, diary manure, and poultry manure, respectively.

(A)

Ca-P, in both poultry and diary manure.

Table. Chemical characteristics of soils under study.

	Number	рН	EC	OM	Lancaster P _o O _c	Са	K	Mg	Na
Soils	samples	(1:5H ₂ O)	(dS m ⁻¹)	(g kg⁻¹)	(mg kg ⁻¹⁾	cmol _c kg ⁻¹			
Pig manure treatment	5	7.1	7.94	44	1,134	12.4	4.62	7.5	2.40
Poultry manure treatment	5	6.9	2.73	38	1,013	12.3	1.37	6.5	1.78
Diary manure treatment	4	6.5	7.24	34	1,113	12.5	3.01	3.2	0.23
Optimum range for crops growth		6.0~7.0	≤ 2.00	20~30	350~500	5.0 ~7.0	0.70 ~0.80	1.5 ~2.5	-

- Phosphate content of soils was about 2 times higher than optimum range for crop growth.
- Table. Chemical properties of livestock manures taken from farms.

manures type	Number of sample	T-N	P ₂ O ₅	CaO %	Fe	AI
Pig manure	3	1.29	2.15	3.64	0.33	0.06
Poultry manure	3	1.47	1.69	5.47	0.43	0.40
Diary manure	4	0.83	1.20	1.73	0.24	0.30

 \succ The concentration of P₂O₅ was the order of pig > poultry > diary manure and CaO is the highest among elements.

Methods of analysis

Fig. Analysis of XRD with soils treated pig manure(A), poultry(B), and diary manure(C).

Fig. Scanning electron micrographs of pig manure(A) and poultry manure(B), and diary manure(C).

 \blacktriangleright Phosphorus combined AI and Ca were found in pig manure and both poultry and diary manure, respectively.

Conclusions

Chemical fraction of phosphorus with soils applied livestock manures varied the dominant forms combined phosphorus.

✤ It was predicted that phosphate precipitates occurred as the content of phosphorus increased at plastic film house soils where livestock manures were applied continuously.

References

Kim Y. K. 2000. A study of phosphate adsorption on kaolinite by

- Phosphorus fractionation(SSSAJ, 1996)

• T-P : NaHCO₃

• Organic –P: Ignition

Inorganic-P : Modified Chang & Jackson - XRD and SEM-EDS

- XRD and SEM-EDS

 $\succ \beta$ -Ca₃(PO₄)₂(β -tricalcium phosphate) as phosphate precipitates was identified in soils applied diary and poultry manure.

 \succ It was estimated that Al₃(PO₄)₂(OH)₃·H₂O was originated from pig manure because precipitation reactions occurs near the high concentration of fertilizers.

³¹P NMR spectroscopy. J. Miner. Soc. Korea 13:186-195.

Freeman J. S. and D. L. Rowell. 1981. The adsorption and precipitation of phosphate onto calcite. J. of Soil Sci. 32:75-84.

✤ Gungor, K., A. Jurgensen, and K.G. Karthikeyan. 2007. Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J. Environ. Qual. 36:1856-1863.

THERE AND CONTRACTOR STORESTOR