Determination of Sources of Soil Nitrate in a Long-Term Irrigated Rotation Using Ion Exchange Membranes and Isotope Ratio Measurements

CALGARY W.-J. Shin¹, M. Nightingale¹, J. Goodwin¹, Eric Bremer², B. H. Ellert³ and Bernhard Mayer¹ ¹University of Calgary, ²Western Ag Innovations, and ³Agriculture and Agri-Food Canada

Objective

The objective was to test the potential use of Plant Root Simulator (PRS) probes for determining $\delta^{15}N$ and $\delta^{18}O$ values of soil nitrate in the laboratory and under field conditions.

Laboratory Experiment

Field Experiment

Materials and methods

- Long-term irrigated crop rotation at Lethbridge, AB
- Three rotations (A=alfalfa, W=wheat, B=barley, C=corn) 1) AAAWB CWCWBAAAB

Materials and methods

- 5 PRS probes were inserted in thirteen 1L-Nalgene bottles containing 1 kg dried sand and 200 ml KNO₃ solution (50 mg NO₃/L).
- PRS probes were removed periodically after 1 to 21 days.
- Adsorbed ions were removed from each PRS probe separately with 20 mL of 0.5N HCI.
- $\delta^{15}N$ and $\delta^{18}O$ values of nitrate were determined using the denitrifier technique and isotope ratio mass spectrometry at the Isotope Science Laboratory in the University of Calgary with a measurement uncertainty of 0.3 ‰ for $\delta^{15}N$ and 0.5 ‰ for $\delta^{18}O$.

Results

Nitrate adsorbed rapidly onto the PRS probes in the laboratory sand in the first week, with continued but slower nitrate adsorption in weeks 2 and 3 (Fig. 1).

3) CWCWB+N (34.5-0-0, 100 kg N/ha/yr)

- Two fertility treatments
 - Manure: 33.5 wet t/ha once every four years (2009), +P P_only: 0-45-0, 10 kg P/ha/yr
- PRS probes buried for 13 days in June 2012 (crop = wheat)

Results

- Nitrate adsorption was 60% higher in the N-fertilized rotation (33 vs. 20 μ g NO₃-N/cm²/13d, *P*=0.04), but not affected by other treatments (not shown).
- Manure treatment increased $\delta^{15}N$ values from 5.1 to 6.3 % (*P*=0.01), but did not affect δ^{18} O values (Fig. 3).
- N-fertilized rotation (#3) increased $\delta^{15}N$ values from 5.1 to 7.1‰ (P=0.01) and δ^{18} O from -7.2 to 2.7 ‰ (P=0.01).

recovered from the PRS probes versus

nitrate removal (in %).

- δ^{15} N values of nitrates adsorbed on PRS probes ranged from 2.9 to 3.1‰ and were identical to that of initial KNO₃ solution (3.0 %)irrespective of the extent of nitrate recovery (Fig. 2).
- δ^{18} O values of nitrate from the PRS probes were also identical (0.4±0.2‰) with that of the KNO₃ solution within the measurement uncertainty (not shown).

Fig. 3. Effect of crop rotation and fertility treatment on isotope ratios of soil nitrate collected by PRS probes in field study.

Conclusions

Laboratory: soil nitrate adsorbed onto PRS probes in sufficient quantities for isotope analysis within days without significant

 $\delta^{15}N$ and $\delta^{18}O$ values of nitrate eluted from PRS probes were accurate and precise regardless of the

extent of nitrate recovered

on the PRS probes.

nitrogen and oxygen isotope fractionation.

• Field: nitrogen and oxygen isotope ratios of nitrate were both affected by cropping treatments.

• PRS probes are an effective tool to collect soil nitrate for isotope analysis.