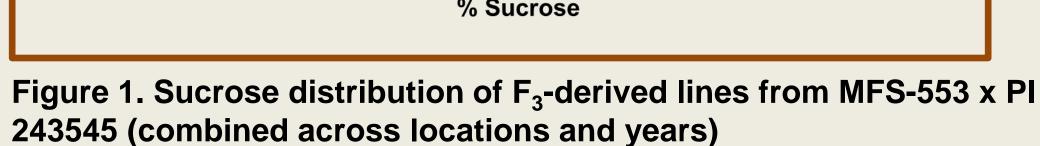


UNIVERSITY OF ARKANISAS Identification of Quantitative Trait Loci (QTL) for Sucrose and Stachyose Content in Soybean Seed

Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701

Introduction

Sucrose is a desirable sugar in soybean seed that affects the quality and taste of soyfoods and feed, while stachyose is a non-digestible sugar that induces flatulence in non-ruminant animals. Therefore, soybean cultivars with high sucrose and low stachyose would be valuable for soyfoods and meal markets. The objectives of this study were to identify QTL associated with seed sucrose and stachyose content using Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers.


	Range	No. normal	No. low	X ² (15:1)	P-Value
		stachyose lines	stachyose lines		
ayetteville, 201	0				
Dsage	4.53 - 5.18	118	11	1.11	0.29
/99-5089	0.40 - 0.46				
_{3:5} lines	0.19 - 5.08				
Argentina, 2011					
Dsage	4.12 - 4.76	121	8	0.001	0.97
/99-5089	0.21 - 0.37				
- _{3:6} lines	0.23 - 5.38				
Costa Rica, 2011					
Dsage	1.98 - 4.44	126	3	3.30	0.07
/99-5089	0.23 - 0.39				
_{3:6} lines	0.20 - 4.77				
3 - Env. Combine					
Dsage	1.98 - 5.18	126	3	3.30	0.07
/99-5089	0.21 - 0.46				
-derived lines	0.22 - 5.05				
23.0 - BARC 24.0 - Satt34 25.0 - BARC 32.0 - Satt17 37.0 - BARC 40.0 - Sat_2 42.0 - BARC 45.0 - BARC	-017045-0218 -019105-0330 45* -040251-0769 73* -044745-0878	05** 94** 85* 09** 17*	0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	<u>4 2.0 3.5</u> 5.0 5	4.0

Materials and Methods

A low sucrose small-seeded line, MFS-553, was crossed with a high sucrose largeseeded plant introduction, PI 243545, to develop a sucrose QTL mapping population with 94 lines. A total of 5361 SNP markers covering 20 soybean chromosomes were used to screen the parental lines. Out of 5361, 2016 were polymorphic and used to screen the F_{3'4} population derived from MFS-553 x PI 243545. A normal stachyose cultivar, Osage, was crossed with a low stachyose line, V99-5089, and F_3 mapping population with 129 lines were developed for genetic study of stachyose content. A total of 34 SSR and 56 SNP markers on chromosome 10 and 11 were used to screen the parental lines. A total of 5 polymorphic SSR and 16 polymorphic SNP markers were used to screen the $F_{3'4}$ lines derived from Osage x V99-5089. For phenotypic data, seed of $F_{3:5}$ and $F_{3:6}$ lines from MFS-553 x PI 243545 and Osage x V99-5089 were analyzed for sucrose and stachyose using high performance liquid chromatography (HPLC), respectively. Both populations were grown in Fayetteville in 2010, and in Argentina and Costa Rica winter nurseries in 2011.

MFS-553

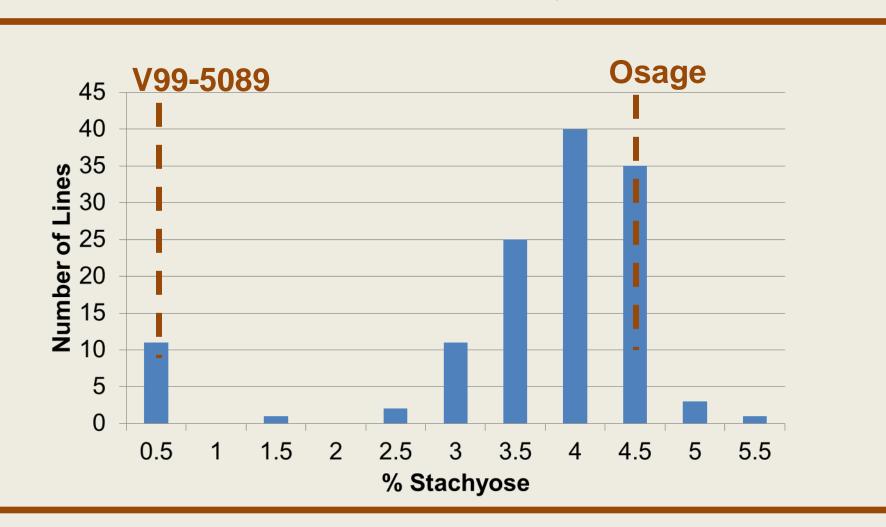
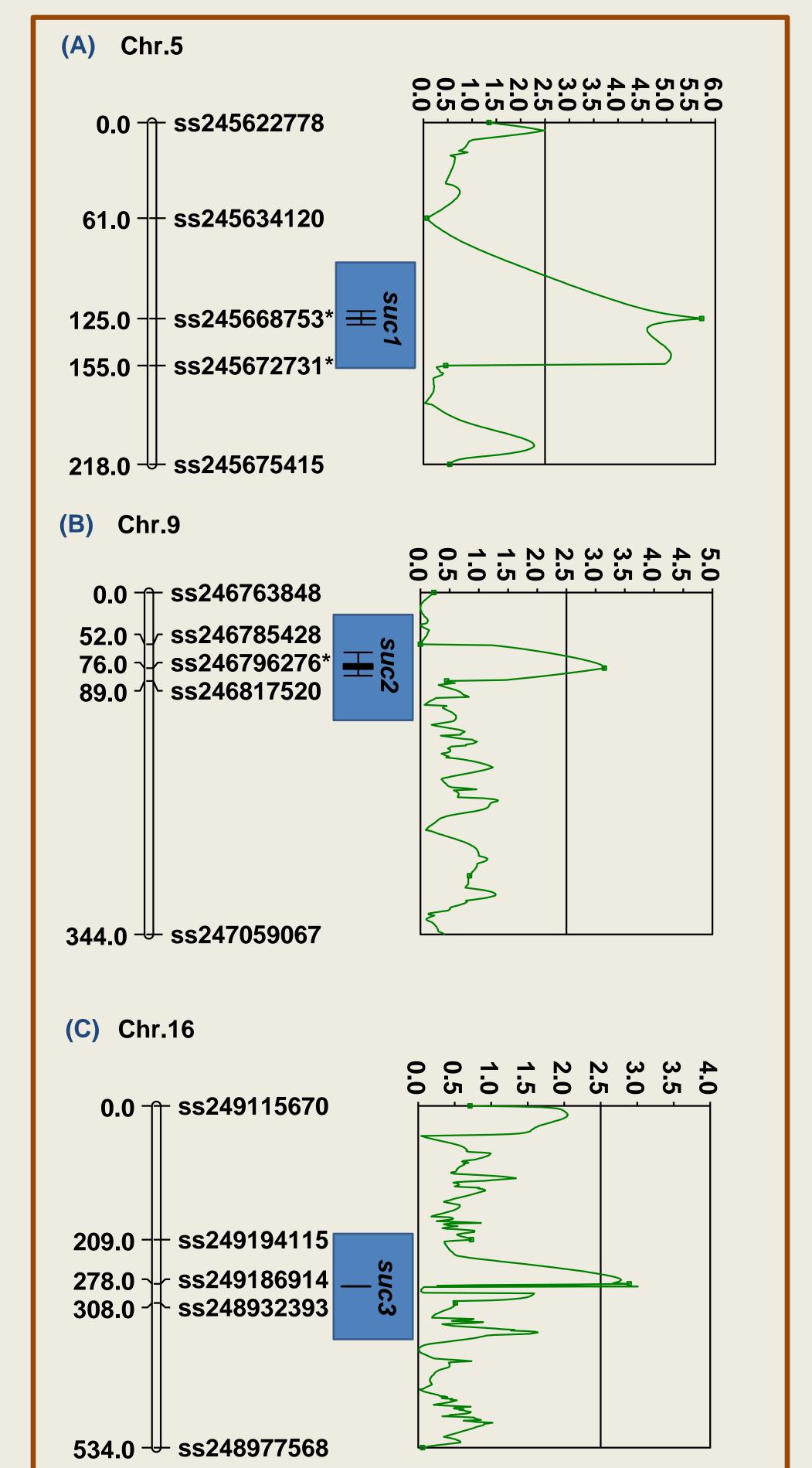



Figure 2. Stachyose distribution from F₃ lines from Osage x V99-5089 (combined across locations and years)

PI 243545

V99-5089

Results

Table 1. Summary of SNP markers used in screening F_{3:4} population from MFS-553 x PI 243545 for seed sucrose content.

Chr.	Length	No. SNP marker	No. SNP locus	Average distance between
	(cM)	mapped	located separately	SNP loci (cM)
1	169.3	28	21	8.1
2	112.8	19	18	6.3
3	275.0	83	62	4.4
4	202.9	80	48	4.2
5	219.6	47	26	8.4
6	435.7	109	86	5.1
7	470.3	76	65	7.2
8	371.0	106	76	4.9
9	344.9	165	112	3.1
10	576.8	60	40	14.4
11	312.2	119	72	4.3
12	293.2	24	17	17.2
13	412.3	134	99	4.2
14	227.5	159	68	3.3
15	396.3	132	100	4.0
16	534.9	237	130	4.1
17	395.6	101	85	4.7
18	290.8	116	91	3.2
19	407.2	66	48	8.5
20	153.7	36	19	8.1
Average	330.1	95	64	5.1

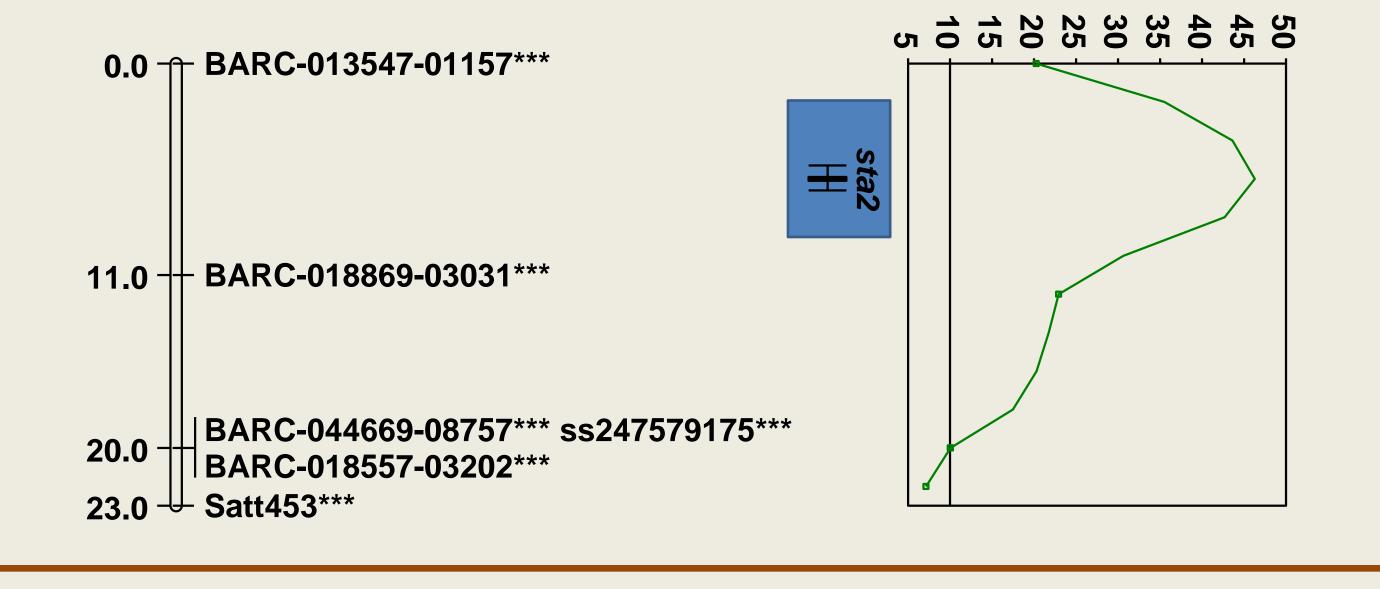


Figure 4. Composite interval mapping for seed stachyose QTL on chromosome 10 (A) and 11 (B) in 129 F₃-derived lines from Osage x V99-5089 evaluated across three environments. *, **, *** represents significant association with stachyose content at P-value ≤ 0.05, 0.01, 0.001, respectively. Conclusions

- ✤ The sucrose content in the population from MFS-553 x PI 243545 showed a normal distribution as expected for multiple genes/QTL; whereas stachyose content in Osage x V99-5089 segregated in a digenic ratio of 15 normal : 1 low in the population.
- Three new sucrose QTL were found on Chr. 5, 9 and 16, explaining 46%, 10% and 8% of phenotypic variation for sucrose content, respectively.
- ✤ A new minor stachyose gene was identified on Chr. 10 which explained 11% of phenotypic variation for stachyose content.
- A stachyose gene on Chr. 11 was confirmed in present study that explained 81%

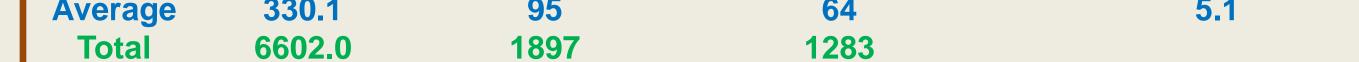


Table 2. Summary of SNP markers used in screening the F_{3:4} population from Osage x V99-5089 for seed stachyose content.

11 23.4 1 19 1 5	5.3
	3.9
Total 132.0 34 56 10 18	4.7

Figure 3. Composite interval mapping using SNP markers for seed sucrose QTL on Chr. 5, 9, and 16 in 94 F₃-derived lines from MFS-553 x PI 243545; (A) three locations and two years; (B) combined data across two locations in 2011; (C) in Fayetteville in 2010. *, **, *** represents significant association with seed sucrose content at P-value ≤ 0.05, 0.01, 0.001, respectively.

of phenotypic variation for stachyose content.

•••

SSR/SNP markers and sugar QTL/genes identified from this study can be used for marker assisted selections in breeding soybean lines with desired sugar profile.

Maughan, P.J., M.A. Saghai Maroof, and G.R. Buss. 2000. Identification of quantitative trait loci controlling sucrose content in soybean (*Glycine max*). Mol. Breed. 6:105–111. Maroof, M.A.S., and G.R. Buss. 2008. Low phytic acid, low stachyose, high sucrose soybean lines. U.S. Patent 12/033,830, field Feb.19, 2008. Zhang, B., P. Chen, A. Shi, A. Hou, T. Ishibashi, and D. Wang. 2009. Putative quantitative trait associated with calcium content in soybean seed. J. Hered. 100:263-269.